Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mạch có cộng hưởng điện thì \(w=\frac{1}{\sqrt{LC}}\)
Tần số: \(f_0=\frac{\omega}{2\pi}=\frac{1}{2\pi\sqrt{LC}}\)
Theo giả thiết ta thấy: \(U_d^2=U^2+U_C^2\left(=2U_C^2\right)\)
nên u vuông pha với uC --- > u cùng pha với i và ud lệch pha 1 góc < 90o so với i (bạn có thể vẽ giản đồ véc tơ để kiểm tra lại)
--->Trong mạch đang xảy ra cộng hưởng và cuộn dây có điện trở thuần
---->Đáp án C
\(\leftrightarrow\frac{u^2_R}{\left(\frac{8}{5}\right)^2}+\frac{u^2_L}{\left(\frac{5}{2}\right)^2}=1\)
Điều kiện :
\(\begin{cases}u_R\le\frac{8}{5}\left(V\right)\\u_L\le\frac{5}{2}\left(V\right)\end{cases}\)
\(\Rightarrow U_{\text{oR}}=\frac{8}{5}\left(V\right);U_{0L}=\frac{5}{2}\left(V\right)\)
\(\Rightarrow\frac{R}{\omega L}=\frac{8}{5}.\frac{2}{5}=\frac{16}{25}\leftrightarrow L=\frac{25R}{16L}=\frac{1}{2\pi}\left(H\right)\)
Đáp án C
Điểu chỉnh điện dung C của tụ thấy C = C1 và C = C2 thì có cùng giá trị hiệu dụng của tụ điện \(U_{C1} = U_{C2}\).
Khi đó để \(U_{Cmax}\) thì \(C=C_0 = \frac{C_1+C_2}{2}\)
Chọn đáp án.D.
Xem t = 0 là lúc cả hai mạch bắt đầu dao động
Phương trình hiệu điện thế trên 2 tụ C1 và C2 lần lượt có dạng
\(\begin{cases}u_1=12cos\left(\omega t\right)\left(V\right)\\u_2=6cos\left(\omega t\right)\left(V\right)\end{cases}\)
Độ chênh lệch Hiệu điện thế: \(\Delta u=u_1-u_2=6cos\left(\omega t\right)\left(V\right)\)
\(u_1-u_2=6cos\left(\omega t\right)=\pm3\Rightarrow cos\left(\omega t\right)=\pm0,5\Rightarrow cos\left(\frac{2\pi}{T}t\right)=\pm0,5\)
\(\Rightarrow\Delta t_{min}=\frac{T}{6}=\frac{10^{-6}}{3}s\)
Giá trị tức thời \(u_m=u_{d1}+u_{d2}\)
Mà theo giả thiết giá trị hiệu dụng \(U_m=U_{d1}+U_{d2}\)
Suy ra ud1 cùng pha với ud2
\(\Rightarrow\tan\varphi_1=\tan\varphi_2\)
\(\Rightarrow\frac{Z_{L1}}{R_1}=\frac{Z_{L2}}{R_2}\)
\(\Rightarrow L_1R_2=L_2R_1\)
Chọn D
Chọn A
ω12L1C1 = 1 => L1 = 1 ω 1 2 C 1
ω22L2C2 = 1 => L2 = 1 ω 2 2 C 2 = 1 2 ω 1 2 C 1
Khi hai mạch mắc nối tiếp với nhau để có cộng hưởng Σ Z L = Σ Z C
ωL1 + ωL2 = 1 ω C 1 + 1 ω C 2
=> ω 1 ω 1 2 C 1 + 1 2 ω 1 2 C 1 = 1 ω C 1 + 2 ω C 1
=> ω2 1 ω 1 2 C 1 + 1 2 ω 1 2 C 1 = 1 C 1 + 2 C 1
=> ω = ω1. 2 => f = f1 2