Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(U_{RC}=const=U\) khi \(Z_{L1}=2Z_C=R\)
Mặt khác L thay đổi để : \(U_{Lmax}:U_{Lmax}=\frac{U\sqrt{R^2+Z^2_C}}{R}=\frac{U\sqrt{2^2+1}}{2}=\frac{U\sqrt{5}}{2}\)
\(\Rightarrow chọn.D\)
+,có C=C1=>U_R=\frac{U.R}{\sqrt{R^2+(Zl-ZC1)^2}}
+,U R ko đổi =>Zl=ZC1
+,có c=C1/2=>ZC=2ZC1
=>U(AN)=U(RL)=\frac{U\sqrt{r^2+Z^2l}}{\sqrt{R^2+(Zl-2Z^2C1)}}=u=200V
Theo giả thiết ta thấy: \(U_d^2=U^2+U_C^2\left(=2U_C^2\right)\)
nên u vuông pha với uC --- > u cùng pha với i và ud lệch pha 1 góc < 90o so với i (bạn có thể vẽ giản đồ véc tơ để kiểm tra lại)
--->Trong mạch đang xảy ra cộng hưởng và cuộn dây có điện trở thuần
---->Đáp án C
Áp dụng: Hai dao động điều hòa x1 vuông pha với x2 thì \(\left(\frac{x_1}{x_{1max}}\right)^2+\left(\frac{x_2}{x_{2max}}\right)^2=1\)
Nên: Do uR vuông pha với uL \(\Rightarrow\left(\frac{u_R}{U_{0R}}\right)^2+\left(\frac{u_L}{U_{0L}}\right)^2=1\)
Ở thời điểm t2: \(\left(\frac{0}{U_{0R}}\right)^2+\left(\frac{20}{U_{0L}}\right)^2=1\Rightarrow U_{0L}=20V\) , tương tự: \(U_{0C}=60V\)
Ở thời điểm t1: \(\left(\frac{15}{U_{0R}}\right)^2+\left(\frac{-10\sqrt{3}}{20}\right)^2=1\Rightarrow U_{0R}=30V\)
Vậy: \(U_0=\sqrt{U_{0R}^2+\left(U_{0L}-U_{0C}\right)^2}=\sqrt{30^2+\left(20-60\right)^2}=50V\)
\(\Rightarrow U=\frac{U_0}{\sqrt{2}}=25\sqrt{2}V\)
Em có thể xem thêm lý thuyết và bài tập tự luyện phần điện xoay chiều tại đây: http://edu.olm.vn/on-tap/vat-ly/chuyen-de.52/%C4%90i%E1%BB%87n-xoay-chi%E1%BB%81u
\(\leftrightarrow\frac{u^2_R}{\left(\frac{8}{5}\right)^2}+\frac{u^2_L}{\left(\frac{5}{2}\right)^2}=1\)
Điều kiện :
\(\begin{cases}u_R\le\frac{8}{5}\left(V\right)\\u_L\le\frac{5}{2}\left(V\right)\end{cases}\)
\(\Rightarrow U_{\text{oR}}=\frac{8}{5}\left(V\right);U_{0L}=\frac{5}{2}\left(V\right)\)
\(\Rightarrow\frac{R}{\omega L}=\frac{8}{5}.\frac{2}{5}=\frac{16}{25}\leftrightarrow L=\frac{25R}{16L}=\frac{1}{2\pi}\left(H\right)\)
Đáp án C
Điểu chỉnh điện dung C của tụ thấy C = C1 và C = C2 thì có cùng giá trị hiệu dụng của tụ điện \(U_{C1} = U_{C2}\).
Khi đó để \(U_{Cmax}\) thì \(C=C_0 = \frac{C_1+C_2}{2}\)
Chọn đáp án.D.
Phương pháp: Sử dụng lí thuyết tổng hợp về hiệu điện thế trong mạch RLC
Cách giải: Đáp án D
Cách giải: Trong mạch RLC mắc nối tiếp, ta có URmax = UAB => Hiệu điện thế trên R: UR ≤ UAB = U => Chọn D