Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: \(2n^2+n-7⋮n-2\)
\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow2n\left(n-2\right)+5\left(n-2\right)+3⋮n-2\)
\(\Leftrightarrow\left(n-2\right)\left(2n+5\right)+3⋮n-2\)
mà \(\left(n-2\right)\left(2n+5\right)⋮n-2\)
nên \(3⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(3\right)\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
Vậy: Để \(2n^2+n-7⋮n-2\) thì \(n\in\left\{3;1;5;-1\right\}\)
Ta có : \(B=\left(1+100\right)+\left(2+99\right)+...+\left(50+51\right)=101.50\)
Ta lại có : \(A=\left(1^3+100^3\right)+\left(2^3+99^3\right)+...+\left(50^3+51^3\right)\)
\(=\left(1+100\right)\left(1^2+100+100^2\right)+\left(2+99\right)\left(2^2+2.99+99^2\right)+...+\left(50+51\right)\left(50^2+50.51+51^2\right)\)
\(=101.\left(1^2+100+100^2+2^2+2.99+99^2+...+50^2+50.51+51^2\right)\) chia hết cho 101 (1)
Lại có : \(A=\left(1^3+99^3\right)+\left(2^3+98^3\right)+...+\left(50^3+100^3\right)\)
Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2)
Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chia hết cho B (đpcm)
Bài 1:
a)Từ \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Rightarrow\left[\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{matrix}\right.\) (Điều phải chứng minh)
b)Ngược lại ta cũng có : nếu \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\)
Bài 2:
a)\(\frac{3m^2+7m+1}{m-3}=\frac{3m\left(m-3\right)+16m+1}{m-3}=\frac{3m\left(m-3\right)}{m-3}+\frac{16m+1}{m-3}=3m+\frac{16m+1}{m-3}\in Z\)
Suy ra \(16m+1⋮m-3\)
\(\frac{16m+1}{m-3}=\frac{16\left(m-3\right)+49}{m-3}=\frac{16\left(m-3\right)}{m-3}+\frac{49}{m-3}=16+\frac{49}{m-3}\in Z\)
Suy ra 49 chia hết m-3....
b)tương tự
a: \(=\left(328+172\right)\left(328^2+328\cdot172+172^2\right)\)
\(=5000\cdot4\left(26896+328\cdot43+7396\right)⋮20000\)
b: \(=69\left(69-5\right)=69\cdot64⋮32\)
\(M=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)=3.4+3^3.4+...+3^{99}.4=4\left(3+3^3+...+3^{99}\right)⋮4\)
\(M=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{98}\left(3+3^2\right)=12+3^2.12+...+3^{98}.12=12\left(1+3^2+...+3^{98}\right)⋮12\)