Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(g'\left(x\right)=\left(2x-8\right)f'\left(x^2-8x+m\right)\)
Ta không cần quan tâm tới nhân tử \(\left(x-1\right)^2\) ở \(f'\left(x\right)\) vì đó là biểu thức mũ chẵn nên ko làm \(f'\left(x\right)\) đổi dấu khi đi qua \(x=1\)
\(g'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}2x-8=0\Rightarrow x=4\\\left(x^2-8x+m\right)^2-2\left(x^2-8x+m\right)=0\left(1\right)\end{matrix}\right.\)
Để hàm số đồng biến trên \(\left(4;+\infty\right)\Rightarrow\left(1\right)\) vô nghiệm hoặc tất cả các nghiệm của (1) đều không lớn hơn 4
\(\left(1\right)\Leftrightarrow\left(x^2-8x+m\right)\left(x^2-8x+m-2\right)=0\)
TH1: \(16-m+2\le0\Rightarrow m\ge18\)
TH2: Nhận thấy 2 pt \(\left\{{}\begin{matrix}x^2-8x+m=0\\x^2-8m+m-2=0\end{matrix}\right.\)
Đều có trung bình cộng hai nghiệm \(\frac{x_1+x_2}{2}=4\Rightarrow\) nếu 2 pt này có nghiệm thì luôn có ít nhất 1 nghiệm lớn hơn 4 \(\Rightarrow\) ko thỏa mãn
Vậy \(m\ge18\) \(\Rightarrow\) có \(99-18+1=82\) giá trị nguyên của m
19.
Giống câu 6?
20.
\(\int\frac{x+1}{2x+1}dx=\frac{1}{2}\int\left(1+\frac{1}{2x+1}\right)dx=\frac{1}{2}x+\frac{1}{4}ln\left(2x+1\right)+C\)
21.
\(S=\frac{\left(2a\right)^2\sqrt{3}}{4}=a^2\sqrt{3}\)
\(\Rightarrow V=S.AA'=3a^3\)
16.
\(log_4\left(ab\right)=log_4\left(ab^4\right)\)
\(\Leftrightarrow log_4a+log_4b=log_4a+log_4b^4\)
\(\Leftrightarrow log_4b=log_4b^4\)
\(\Rightarrow b=1\)
Ủa hình như bạn ghi ko đúng đề, ko liên quan gì đáp án hết
17.
\(\left(\frac{4}{3}\right)^{3x+4}\le\left(\frac{4}{3}\right)^{3x^2+4x}\)
\(\Leftrightarrow3x+4\le3x^2+4x\) (do \(\frac{4}{3}>1\))
\(\Leftrightarrow3x^2+x-4\ge0\Rightarrow\left[{}\begin{matrix}x\le-\frac{4}{3}\\x\ge1\end{matrix}\right.\)
\(D=(-\infty;-\frac{4}{3}]\cup[1;+\infty)\)
18.
\(h=R\sqrt{3}\Rightarrow R=\frac{h}{\sqrt{3}}=\frac{4}{\sqrt{3}}\)
\(\Rightarrow V=\frac{1}{3}\pi R^2h=\frac{64\pi}{9}\)
10.
Ta có \(0\in\left[-1;2\right]\)
\(\lim\limits_{x\rightarrow0^+}\left(-x-\frac{4}{x}\right)=0-\infty=-\infty\)
\(\Rightarrow\) Hàm số không có GTNN
\(\lim\limits_{x\rightarrow0^-}\left(-x-\frac{4}{x}\right)=\lim\limits_{x\rightarrow0^-}\left(-x+\frac{4}{-x}\right)=0+\infty=+\infty\)
\(\Rightarrow\) Hàm số ko có GTLN
Vậy hàm số ko có GTNN và GTLN
Đáp án D đúng
11.
\(f^2\left(x\right)=\left(\sqrt{x-2}+\sqrt{4-x}\right)^2\le2\left(x-2+4-x\right)=4\)
\(\Rightarrow f\left(x\right)\le2\Rightarrow f\left(x\right)_{max}=2\)
12.
\(4f\left(x\right)-9=0\Leftrightarrow f\left(x\right)=\frac{9}{4}\)
Từ BBT, ta thấy đường thẳng \(y=\frac{9}{4}>2\) cắt đồ thị hàm số tại 1 điểm duy nhất
\(\Rightarrow\) Phương trình đã cho có 1 nghiệm
13.
\(x^3-2x^2+3=x^2+3\)
\(\Leftrightarrow x^3-3x^2=0\Leftrightarrow x^2\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Pt có 2 nghiệm nên đồ thị hai hàm số cắt nhau tại 2 điểm
8.
\(SA\perp\left(ABCD\right)\Rightarrow\) AC là hình chiếu của SC lên (ABCD)
\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD)
\(AC=AB\sqrt{2}=a\sqrt{2}\Rightarrow tan\widehat{SCA}=\frac{SA}{AC}=\sqrt{3}\)
\(\Rightarrow\widehat{SCA}=60^0\)
9.
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)
\(\Rightarrow\) SB là hình chiếu của SC lên (SAB)
\(\Rightarrow\widehat{BSC}\) là góc giữa SC và (SAB)
\(SB=\sqrt{SA^2+AB^2}=a\sqrt{2}\)
\(\Rightarrow tan\widehat{BSC}=\frac{BC}{SB}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}\)
\(g'\left(x\right)=-f'\left(3-x\right)=\left(x-3\right)\left(2-x\right)^2\left(\left(3-x\right)^2+9\left(3-x\right)+9\right)\)
Không cần quan tâm tới \(\left(2-x\right)^2\) do \(g'\left(x\right)\) ko đổi dấu khi đi qua điểm dừng này
\(g'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\\left(3-x\right)^2+m\left(3-x\right)+9=0\left(1\right)\end{matrix}\right.\)
Để \(g\left(x\right)\) đồng biến trên \(\left(3;+\infty\right)\Rightarrow\left(1\right)\) vô nghiệm hoặc các nghiệm của (1) đều không lớn hơn 3
\(\left(1\right)\Leftrightarrow h\left(x\right)=x^2-\left(m+6\right)x+3m+18=0\)
\(\Delta=m^2-36\)
TH1: \(\Delta< 0\Rightarrow m^2-36< 0\Rightarrow-6< m< 6\)
TH2: \(\left\{{}\begin{matrix}\Delta\ge0\\h\left(3\right)>0\\\frac{m+6}{2}< 3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge6\\m\le-6\end{matrix}\right.\\9>0\\m< 0\end{matrix}\right.\) \(\Rightarrow m\le-6\)
Vậy \(m< 6\) thì \(g\left(x\right)\) đồng biến trên \(\left(3;+\infty\right)\Rightarrow\) có 5 giá trị nguyên dương
10.
Không gian mẫu: \(C_{23}^2\)
Trong 23 số nguyên dương đầu tiên có 11 số chẵn và 12 số lẻ
Để hai số có tổng chẵn thì hai số đó phải cùng chẵn hoặc cùng lẻ
\(\Rightarrow\) Số cách chọn 2 số thỏa mãn: \(C_{11}^2+C_{12}^2\)
Xác suất: \(P=\frac{C_{11}^2+C_{12}^2}{C_{23}^2}=\frac{11}{23}\)
12.
\(w=\frac{5+iz}{1+z}\Rightarrow w+w.z=5+iz\)
\(\Leftrightarrow w-5=z\left(i-w\right)\Rightarrow z=\frac{w-5}{i-w}\)
Đặt \(w=x+yi\Rightarrow z=\frac{x-5+yi}{-x+\left(1-y\right)i}\Rightarrow\left|\frac{x-5+yi}{-x+\left(1-y\right)i}\right|=\sqrt{2}\)
\(\Leftrightarrow\left(x-5\right)^2+y^2=2x^2+2\left(1-y\right)^2\)
\(\Leftrightarrow x^2+y^2+10x-4y-23=0\)
Tập hợp biểu diễn w là đường tròn có bán kính \(R=\sqrt{\left(-5\right)^2+2^2+23}=2\sqrt{13}\)
9.
Gọi H là trung điểm AB \(\Rightarrow SH\perp\left(ABCD\right)\)
\(SH=\frac{AB\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\)
Đường thẳng BH cắt (SAC) tại A, mà \(BA=2HA\)
\(\Rightarrow d\left(B;\left(SAC\right)\right)=2d\left(H;\left(SAC\right)\right)\)
Từ H kẻ \(HP\perp AC\Rightarrow HP=\frac{1}{2}OB=\frac{1}{4}BD=\frac{a\sqrt{2}}{4}\) (đường trung bình)
Từ H kẻ \(HQ\perp SP\Rightarrow HQ\perp\left(SAC\right)\Rightarrow HQ=d\left(H;\left(SAC\right)\right)\)
\(\frac{1}{HQ^2}=\frac{1}{SH^2}+\frac{1}{HP^2}=\frac{28}{3a^2}\Rightarrow HQ=\frac{a\sqrt{21}}{14}\)
\(\Rightarrow d\left(B;\left(SAC\right)\right)=2HQ=\frac{a\sqrt{21}}{7}\)
A sai
Vì B: f(x) đồng biến => -f(x) nghịch biến=>-f(x)-1 nghịch biến->đúng
C:f(x) đồng biến => -f(x) nghịch biến->đúng
D:f(x) đồng biến => f(x)+1 đồng biến->đúng
Vậy chỉ còn câu A sai
25.
Số cách chọn 6 bạn bất kì từ 12 bạn: \(C_{12}^6\)
Số cách chọn 6 bạn ko chứa học sinh khối 10: \(C_7^6\)
Số cách chọn 6 bạn ko chứa học sinh khối 11: \(C_8^6\)
Số cách chọn 6 bạn ko chứa học sinh khối 12: \(C_9^6\)
Số cách thỏa mãn: \(C_{12}^6-\left(C_7^6+C_8^6+C_9^6\right)=805\)
26.
\(\Leftrightarrow\left\{{}\begin{matrix}-1< x< 3\\x+1< 3-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1< x< 3\\2x< 2\end{matrix}\right.\) \(\Rightarrow-1< x< 1\)
27.
Do chóp đều nên góc giữa A\SB và (ABCD) là góc \(\widehat{SBD}\)
\(BD=AB\sqrt{2}=2a\sqrt{2}\)
\(\Rightarrow SA=SD=BD\Rightarrow\Delta SAD\) đều
\(\Rightarrow\widehat{SBD}=60^0\)
m + n + x = 2000 + 5000 + 100000000 = 100005000