K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2015

\(D=4\left(\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{201.205}\right)\)
\(D=4\left(\left(1-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{9}\right)+...+\left(\frac{1}{201}-\frac{1}{205}\right)\right)\)
D=4[(1-1/205)
D=4.204/205
=>D=816/205
____________________--
li-ke cho mình nhé bn Cao Minh Hoàng

9 tháng 4 2018

=1/5-1/205

=8/41

Nhớ chích đúng cho mình nha!

9 tháng 4 2018

À ,  làm chi tiết hộ mk

15 tháng 6 2023

\(a,\dfrac{3}{5}+\dfrac{3}{5\cdot9}+\dfrac{3}{9\cdot13}+....+\dfrac{3}{97\cdot101}\)

\(=\dfrac{3}{4}\cdot\left(\dfrac{4}{5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+....+\dfrac{4}{97\cdot101}\right)\)

\(=\dfrac{3}{4}\cdot\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+....+\dfrac{1}{97}-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{4}\cdot\left(1-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{4}\cdot\dfrac{100}{101}\)

\(=\dfrac{75}{101}\)

\(b,\left(1+\dfrac{1}{2}\right)\cdot\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{4}\right)\cdot....\cdot\left(1+\dfrac{1}{99}\right)\)

\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot....\cdot\dfrac{100}{99}\)

\(=\dfrac{100}{2}=50\)

15 tháng 6 2023

Tính nhanh:

a) \(\dfrac{3}{5}+\dfrac{3}{5.9}+\dfrac{3}{9.13}+...+\dfrac{3}{97.101}\)

\(\dfrac{3}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{97}-\dfrac{1}{101}\right)\)

\(\dfrac{3}{4}\left(1-\dfrac{1}{101}\right)\)

\(\dfrac{3}{4}\times\dfrac{100}{101}\)

\(\dfrac{75}{101}\)

b) \(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{4}\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)

\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{99}{98}.\dfrac{100}{99}\)

\(=\dfrac{3.4.5...99.100}{2.3.4...98.99}\)

\(=\dfrac{100}{2}\)

\(=50\)

26 tháng 4 2018

    \(\frac{8}{1.5}+\frac{8}{5.9}+\frac{8}{9.13}+...+\frac{8}{x\left(x+4\right)}=\frac{1}{2}\)

\(\Leftrightarrow\)\(2\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{x\left(x+4\right)}\right)=\frac{1}{2}\)

\(\Leftrightarrow\)\(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{x}-\frac{1}{x+4}=\frac{1}{4}\)

\(\Leftrightarrow\)\(1-\frac{1}{x+4}=\frac{1}{2}\)

\(\Leftrightarrow\)\(\frac{x+4-1}{x+4}=\frac{1}{2}\)

\(\Leftrightarrow\)\(\frac{x+3}{x+4}=\frac{1}{2}\)

\(\Rightarrow\)\(2\left(x+3\right)=x+4\)

\(\Leftrightarrow\)\(2x+6=x+4\)

\(\Leftrightarrow\)\(x=-2\)

Vậy....

P/s: tham khảo mk ko chắc là đúng

6 tháng 4 2017

Ta có:\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+......+\frac{1}{81.85}\)

\(=\frac{1}{4}\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+......+\frac{4}{81.85}\right)\)
\(=\frac{1}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+.......+\frac{1}{81}-\frac{1}{85}\right)\)

\(=\frac{1}{4}.\left(1-\frac{1}{85}\right)\)

\(=\frac{1}{4}.\frac{84}{85}=\frac{21}{85}\)

6 tháng 4 2017

\(A=\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{81.85}\)

Ta có công thức

\(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)

\(\Rightarrow A=\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+..+\frac{1}{81}-\frac{1}{85}\right)\)

\(A=\frac{1}{4}.\left(1-\frac{1}{85}\right)\)

\(A=\frac{84}{340}\)

9 tháng 12 2019

1/4(4/5.9+/9.13+...+4/41.45)

Tự túc nhé

9 tháng 12 2019

là sao bn

24 tháng 8 2017

\(S1=\dfrac{5}{10.11}+\dfrac{5}{11.12}+.............+\dfrac{5}{14.15}\)

\(\Leftrightarrow S1=5\left(\dfrac{1}{10.11}+\dfrac{1}{11.12}+...............+\dfrac{1}{14.15}\right)\)

\(\Leftrightarrow S1=5\left(\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+.............+\dfrac{1}{14}-\dfrac{1}{15}\right)\)

\(\Leftrightarrow S1=5\left(\dfrac{1}{10}-\dfrac{1}{15}\right)\)

\(\Leftrightarrow S1=5.\dfrac{1}{30}=\dfrac{1}{6}\)

\(S2=\dfrac{1}{5.9}+\dfrac{1}{9.13}+\dfrac{1}{13.17}+........+\dfrac{1}{21.25}\)

\(\Leftrightarrow4S_2=\dfrac{4}{5.9}+\dfrac{4}{9.13}+..............+\dfrac{4}{21.25}\)

\(\Leftrightarrow4S_2=\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+............+\dfrac{1}{21}-\dfrac{1}{25}\)

\(\Leftrightarrow4S_2=\dfrac{1}{5}-\dfrac{1}{25}\)

\(\Leftrightarrow4S_2=\dfrac{4}{25}\)

\(\Leftrightarrow S_2=\dfrac{16}{25}\)

9 tháng 8 2018

Vì GTTĐ luôn lớn hơn hoặc bằng 0

=> \(\left|x+\frac{1}{1\cdot5}\right|+\left|x+\frac{1}{5\cdot9}\right|+...+\left|x+\frac{1}{397\cdot401}\right|=100x\ge0\)

=> \(x\ge0\)

=> \(x+\frac{1}{1\cdot5}+x+\frac{1}{5\cdot9}+...+x+\frac{1}{397\cdot401}=100x\)

=> \(\left(x+x+...+x\right)+\left(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+...+\frac{1}{397\cdot401}\right)=100x\)

Sau đấy tính vế phải, lấy 100x - vế trái x, rồi chuyển qua bài tìm x là xong, hơi dài đấy ^^

Học tốt ^^

21 tháng 4 2020

Chứng minh \(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}< 1\)

\(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}\)

\(A=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}\)

\(A=\frac{1}{1}-\frac{1}{21}\)

\(A=\frac{20}{21}\)

\(\frac{20}{21}< 1\)

=> \(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}< 1\)( đpcm ) 

* Mình sợ sai xD *