K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(M=\dfrac{1-x}{1+x}:\dfrac{x^2-9-x^2+4+x+2}{\left(x-3\right)\left(x-2\right)}\)

\(=\dfrac{1-x}{1+x}\cdot\dfrac{\left(x-3\right)\left(x-2\right)}{x-3}=\dfrac{\left(1-x\right)\left(x-2\right)}{\left(1+x\right)}\)

b: M<0

=>(x-1)(x-2)/(x+1)>0

=>-1<x<1 hoặc x>2

c: M nguyên

=>(x-1)(x-2) chia hết cho x+1

=>x^2-3x+2 chia hết cho x+1

=>x^2+x-4x-4+6 chia hết cho x+1

=>x+1 thuộc {1;-1;2;-2;3;-3;6;-6}

=>x thuộc {0;-2;1;-3;-4;7;-5}

25 tháng 2 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)

\(\Leftrightarrow A=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2\left(x+2\right)}{x-3}\)

\(\Leftrightarrow A=\frac{2x-9-\left(x-3\right)\left(x+3\right)+2\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{\left(x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow A=\frac{x+4}{x-3}\)

b) Để \(A\inℤ\)

\(\Leftrightarrow\frac{x+4}{x-3}\inℤ\)

\(\Leftrightarrow1+\frac{7}{x-3}\inℤ\)

\(\Leftrightarrow x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Leftrightarrow x\in\left\{2;4;-4;10\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{2;4;-4;10\right\}\)

c) Để \(A=\frac{3}{5}\)

\(\Leftrightarrow\frac{x+4}{x-3}=\frac{3}{5}\)

\(\Leftrightarrow5x+20=3x-9\)

\(\Leftrightarrow2x+29=0\)

\(\Leftrightarrow x=-\frac{29}{2}\)

d) Để \(A< 0\)

\(\Leftrightarrow\frac{x+4}{x-3}< 0\)

\(\Leftrightarrow1+\frac{7}{x-3}< 0\)

\(\Leftrightarrow\frac{-7}{x-3}< 1\)

\(\Leftrightarrow-7< x-3\)

\(\Leftrightarrow x>-4\)

e) Để \(A>0\)

\(\Leftrightarrow\frac{x+4}{x-3}>0\)

\(\Leftrightarrow1+\frac{7}{x-3}>0\)

\(\Leftrightarrow\frac{-7}{x-3}>1\)

\(\Leftrightarrow-7>x-3\)

\(\Leftrightarrow x< -4\)

25 tháng 6 2021

a.\(ĐKXĐ:\hept{\begin{cases}x^2-2x\ne0\\x-2\ne0\\x\left(x+1\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(x-2\right)\ne0\\x-2\ne0\\x\left(x+1\right)\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-1\end{cases}}}\)

b.\(M=\left(\frac{1}{x^2-2x}+\frac{2}{x-2}\right)\div\frac{2x+1}{x\left(x+1\right)}\)

\(=\left(\frac{1}{x\left(x-2\right)}+\frac{2}{x-2}\right)\div\frac{2x+1}{x\left(x+1\right)}\)

\(=\left(\frac{1}{x\left(x-2\right)}+\frac{2x}{x\left(x-2\right)}\right)\div\frac{2x+1}{x\left(x+1\right)}\)

\(=\frac{2x+1}{x\left(x-2\right)}\div\frac{2x+1}{x\left(x+1\right)}\)

\(=\frac{2x+1}{x\left(x-2\right)}.\frac{x\left(x+1\right)}{2x+1}=\frac{x\left(2x+1\right)\left(x+1\right)}{x\left(x-2\right)\left(2x+1\right)}=\frac{x+1}{x-2}\)

c.Để \(M>1\)thì

 \(\frac{x+1}{x-2}>1\)

25 tháng 6 2021

c, Ta có : \(M>1\Rightarrow\frac{x+1}{x-2}>1\Leftrightarrow\frac{x+1}{x-2}-1>0\)

\(\Leftrightarrow\frac{x+1-x+2}{x-2}>0\Leftrightarrow\frac{3}{x-2}>0\)

\(\Rightarrow x-2>0\Leftrightarrow x>2\)vì 3 > 0 

d, Để M nguyên khi \(x+1⋮x-2\Leftrightarrow x-2+3⋮x-2\)ĐK : \(x\ne2\)

\(\Leftrightarrow3⋮x-2\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

x - 21-13-3
x315-1
9 tháng 12 2018

a ) ĐKXĐ : \(x\ne\pm2\)

Ta có : \(M=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{x^2-4}\)

\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x+2-x+2+x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x+2}{x-2}\)

b ) Để \(M\in Z\Leftrightarrow\frac{x+2}{x-2}\in Z\Leftrightarrow x+2⋮x-2\)

\(\Leftrightarrow x-2+4⋮x-2\)

\(\Leftrightarrow4⋮x-2\)

\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;4;-4\right\}\left(x\in Z\Rightarrow x-2\in Z\right)\)

\(\Leftrightarrow x\in\left\{3;1;4;0;6;-2\right\}\)

Vậy \(M\in Z\Leftrightarrow x\in\left\{3;1;4;0;6;-2\right\}\)

:D

9 tháng 12 2018

b ) \(x\in\left\{3;1;4;0;6\right\}\left(x\ne-2\right)\)

Mik quên :D 

16 tháng 12 2016

a. M=\(\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{x^2-4}\)

\(M=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\) MC = (x-2)(x+2)

\(M=\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(M=\frac{x+2-x+2+x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(M=\frac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}\)

\(M=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}\)

\(M=\frac{x+2}{x-2}\)

b. Ta có: \(M=\frac{x+2}{x-2}=\frac{x-2+2+2}{x-2}=\frac{x-2+4}{x-2}=\frac{x-2}{x-2}+\frac{4}{x-2}=1+\frac{4}{x-2}\)

Để M đạt giá trị nguyên thì \(\frac{4}{x-2}\) cũng phải đạt giá trị nguyên

\(\Leftrightarrow\left(x-2\right)\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow x=\left\{3;1;4;0;6;-2\right\}\)

16 tháng 12 2016

a) \(M=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{\left(x+2\right)\left(x-2\right)}\)

\(\Rightarrow M=\frac{x+2-\left(x-2\right)+x^2+4x}{\left(x+2\right)\left(x-2\right)}\)

\(\Rightarrow M=\frac{x+2-x+2+x^2+4x}{\left(x+2\right)\left(x-2\right)}\)

\(\Rightarrow M=\frac{x^2+4x+4}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)}=\frac{x+2}{x-2}\)

b) \(\frac{x+2}{x-2}=\frac{x-2+4}{x-2}=\frac{x-2}{x-2}+\frac{4}{x-2}=1+\frac{4}{x-2}\)

\(\Rightarrow x-2\inƯ_4\left\{-4;-2;-1;1;2;4\right\}\)

Ta có :

\(x-2=-4\Rightarrow x=-2\) (loại)

\(x-2=-2\Rightarrow x=0\)

\(x-2=-1\Rightarrow x=1\)

\(x-2=1\Rightarrow x=3\)

\(x-2=2\Rightarrow x=4\)

\(x-2=4\Rightarrow x=6\)

Vậy: Các giá trị của x để \(M\in Z\) là:

\(x=0;1;3;4;6\)