Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\dfrac{1}{x+2}+\dfrac{1}{\left(x+2\right)\left(4x+7\right)}\\ C=\dfrac{4x+7}{\left(x+2\right)\left(\left(4x+7\right)\right)}+\dfrac{1}{\left(x+2\right)\left(4x+7\right)}\\ C=\dfrac{4x+7+1}{\left(x+2\right)\left(4x+7\right)}\\ C=\dfrac{4x+8}{\left(x+2\right)\left(4x+7\right)}\\ C=\dfrac{4\left(x+2\right)}{\left(x+2\right)\left(4x+7\right)}\\ C=\dfrac{4}{4x+7}\)
\(D=\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\\ D=\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}-\dfrac{3x-2}{4x^2-2x}\\ D=\dfrac{\left(1-3x\right)\left(2x-1\right)}{2x\left(2x-1\right)}+\dfrac{\left(3x-2\right)2x}{\left(2x-1\right)2x}-\dfrac{3x-2}{2x\left(2x-1\right)}\\ C=\dfrac{\left(1-3x\right)\left(2x-1\right)+\left(3x-2\right)2x-\left(3x-2\right)}{2x\left(2x-1\right)}\\ C=\dfrac{\left(1-3x\right)\left(2x-1\right)+\left[\left(3x-2\right)2x-\left(3x-2\right)\right]}{2x\left(2x-1\right)}\\ C=\dfrac{\left(1-3x\right)\left(2x-1\right)+\left(3x-2\right)\left(2x-1\right)}{2x\left(2x-1\right)}\\ C=\dfrac{\left[\left(1-3x\right)+\left(3x-2\right)\right]\left(2x-1\right)}{2x\left(2x-1\right)}\\ C=\dfrac{-\left(2x-1\right)}{2x\left(2x-1\right)}\\ C=-\dfrac{1}{2x}\)
\(A=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\)
Vậy \(A_{min}=1\Leftrightarrow x=-1\)
\(B=x^2+4x=6=x^2+4x+4+2=\left(x+2\right)^2+2\ge2>0\)
Vậy \(B_{min}=2\Leftrightarrow x=-2\)
a)Đkxđ x≠\(\frac{5}{4}\)
Ta có để \(\frac{2x+3}{4x-5}\)=0=>2x+3=0=>x=\(\frac{3}{2}\)(thỏa mãn)
b)Ta có \(x^2-4x+3=x^2-3x-x+3\)
=x(x-3)-(x-3)
=(x-1)(x-3)
=>Đkxđ x≠1,3
để bài b)=0 duy ra (x-1)(x-2)=0
=>x=1,x=2 đối chiếu đkxđ có x=2 (t/mãn)
c)phân thức tương đương:\(\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}\)
= \(\frac{x+1}{x-1}\)
=>Đkxđ x≠1
Để x+1/x-1=0=>x+1=0
=>x=-1(t/mãn)
d) phân thức tương đương
\(\frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+5\right)}\)
=\(\frac{x+2}{x+5}\)=>x≠-5
để phân thức đạt 0 suy ra x+2=0
=>x=-2
e)phân thức tương đương
\(\frac{x\left(x-4\right)\left(x+4\right)}{x\left(x-4\right)\left(x+1\right)}\)
=\(\frac{x+4}{x+1}\)
Đkxđ x khác -1
Để phân thức đạt GT là 0 x+4=0=>x=-4
g)\(\frac{\left(x-1\right)\left(x+1\right)^2}{\left(x-1\right)\left(x^2+x+3\right)}\)
=\(\frac{\left(x+1\right)^2}{x^2+x+3}\)
vì\(x^2+x+3>0\)(Dễ dàng chứng minh)
=>xϵR
Để phân thức đạt gt là 0 => \(\left(x+1\right)^2=0=>x=-1\)
1/
A= \(\dfrac{2x+6}{\left(x+3\right)\left(x-2\right)}\) = 0 ;(ĐKXĐ : x ≠ -3; x ≠ 2)
⇔ A = \(\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\) = 0
⇔ A = \(\dfrac{2}{x-2}\) = 0
⇒ x = 2 (loại) ⇒ pt vô nghiệm
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
Mình là 1 câu mẫu, các câu kia tương tự nhé bạn !
a) \(Q=\frac{3x^2-x+3}{3x+2}=\frac{3x^2+2x-3x-2+5}{3x+2}=\frac{\left(3x+2\right)\left(x-1\right)+5}{3x+2}=x-1+\frac{5}{3x+2}\)
Để \(Q\) nhận giá trị nguyên thì \(5⋮3x+2\)
\(\Leftrightarrow3x+2\inƯ\left(5\right)=\left\{1,-1,5,-5\right\}\) ( Do \(x\in Z\) )
\(\Leftrightarrow x\in\left\{-\frac{1}{3};-1;1;-\frac{7}{3}\right\}\)
Mà \(x\in Z\) nên \(\Leftrightarrow x\in\left\{-1;1\right\}\)
Vậy \(\Leftrightarrow x\in\left\{-1;1\right\}\)
P/s : Phương pháp làm các bài dạng này :
- Phân tích tử để tử chứa nhân tử giống dưới mẫu, khi đó phần còn thừa lại sẽ có dạng \(\frac{a}{ax+b}\) ( với a trên tử có thể là dạng số, dạng biến dưới mẫu )
- Rồi làm tiếp bằng cách để biểu thức đó nguyên thì tử phải chia hết chia hết cho mẫu.
Chúc bạn học tốt nhé !