Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, tự lm......
P=x2 / x-1
b, P<1
=> x2/x-1 <1
<=>x2/x-1 -1 <0
<=>x2-x+1 / x-1<0
Vi x2-x+1= (x -1/2 )2+3/4 >0
=> Để P<1
x-1 <0
x <1
c, x2/x-1 = x2-1+1/x-1
= x+1 +1/x-1
= 2 +(x-1) + 1/x-1
Áp dụng BDT Cô si ta có :
x-1 + 1/x-1 >hoặc = 2
=> P>= 3
Đầu = xảy ra <=> x=2( x >1)
Vay......
làm đúng nhuwng phần c, phải >=4 cơ vì công cả 2 vế với 2 ta có P>=4
a) Đk \(x\ne\pm1\), sau khi rút gọn ta được: (bạn tư làm)
\(P=\frac{x}{x+1}\)
b) Khi \(\left|x-\frac{2}{3}\right|=\frac{1}{3}\) thì hoặc \(x-\frac{2}{3}=\frac{1}{3}\) hoặc \(x-\frac{2}{3}=-\frac{1}{3}\)
Hay là \(x=1\) hoặc \(x=\frac{1}{3}\)
Do để P có nghĩa thì \(x\ne\pm1\) nên \(x=\frac{1}{3}\), khi đó:
\(P=\frac{\frac{1}{3}}{\frac{1}{3}+1}=\frac{1}{4}\)
c) P > 1 khi \(\frac{x}{x+1}>1\)
\(\Leftrightarrow1-\frac{1}{x+1}>1\)
\(\Leftrightarrow\frac{1}{x+1}< 0\)
\(\Leftrightarrow x< -1\)
e) Đề không rõ ràng
a.\(ĐKXĐ:\hept{\begin{cases}x^2-2x\ne0\\x-2\ne0\\x\left(x+1\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(x-2\right)\ne0\\x-2\ne0\\x\left(x+1\right)\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-1\end{cases}}}\)
b.\(M=\left(\frac{1}{x^2-2x}+\frac{2}{x-2}\right)\div\frac{2x+1}{x\left(x+1\right)}\)
\(=\left(\frac{1}{x\left(x-2\right)}+\frac{2}{x-2}\right)\div\frac{2x+1}{x\left(x+1\right)}\)
\(=\left(\frac{1}{x\left(x-2\right)}+\frac{2x}{x\left(x-2\right)}\right)\div\frac{2x+1}{x\left(x+1\right)}\)
\(=\frac{2x+1}{x\left(x-2\right)}\div\frac{2x+1}{x\left(x+1\right)}\)
\(=\frac{2x+1}{x\left(x-2\right)}.\frac{x\left(x+1\right)}{2x+1}=\frac{x\left(2x+1\right)\left(x+1\right)}{x\left(x-2\right)\left(2x+1\right)}=\frac{x+1}{x-2}\)
c.Để \(M>1\)thì
\(\frac{x+1}{x-2}>1\)
c, Ta có : \(M>1\Rightarrow\frac{x+1}{x-2}>1\Leftrightarrow\frac{x+1}{x-2}-1>0\)
\(\Leftrightarrow\frac{x+1-x+2}{x-2}>0\Leftrightarrow\frac{3}{x-2}>0\)
\(\Rightarrow x-2>0\Leftrightarrow x>2\)vì 3 > 0
d, Để M nguyên khi \(x+1⋮x-2\Leftrightarrow x-2+3⋮x-2\)ĐK : \(x\ne2\)
\(\Leftrightarrow3⋮x-2\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x - 2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
a)
\(A=\left(\frac{1}{x}+\frac{x}{x+1}\right):\left(\frac{x+3}{x^2+x}-\frac{1}{x+1}\right)=\left(\frac{x+1}{x\left(x+1\right)}+\frac{x^2}{x\left(x+1\right)}\right):\left(\frac{x+3}{x^2+x}-\frac{x}{x\left(x+1\right)}\right)\)
\(=\frac{x+1+x^2}{x^2+x}:\frac{x+3-x}{x^2+x}=\frac{x^2+x+1}{x^2+x}.\frac{x^2+x}{3}=\frac{x^2+x+1}{3}\)
b) 2(x-1)=x2-1 <=> 2x-2=x2-1 <=> 0=x2-1+2-2x <=> x2-2x+1=0 <=> (x-1)2=0 <=>x-1=0<=>x=1 thay vào
\(A=\frac{x^2+x+1}{3}=\frac{1^2+1+1}{3}=\frac{3}{3}=1\)
c) \(A=\frac{x^2+x+1}{3}=\frac{1}{3}\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
d)\(-A=-\frac{x^2+x+1}{3}=-\frac{x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}}{3}=-\frac{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}{3}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\Rightarrow\frac{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}{3}\ge\frac{1}{4}\Rightarrow-A\le-\frac{1}{4}< 0\)
Ta có đpcm
phần d chỉ CM -A<0 thôi mà
bạn giải thích hộ mình với , theo mình nghĩ thì hình như bạn đang làm phương pháp của tìm GTNN GTLN
a, P= \(\frac{x\left(x+1\right)}{\left(x-1\right)^2}\): ( \(\frac{x+1}{x}\)+ \(\frac{1}{x-1}\)- \(\frac{x^2-2}{x\left(x-1\right)}\)
P= \(\frac{x\left(x+1\right)}{\left(x-1\right)^2}\): \(\frac{\left(x+1\right)\left(x-1\right)+x-x^2+2}{x\left(x-1\right)}\)
P= \(\frac{x\left(x+1\right)}{\left(x-1\right)^2}\). \(\frac{x\left(x-1\right)}{x^2-1+x-x^2+2}\)
P= \(\frac{x^2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}\)
P= \(\frac{x^2}{x-1}\)( đkxđ x khác 1)
b, để P=\(\frac{-1}{2}\)\(\Rightarrow\)\(\frac{x^2}{x-1}\)=\(\frac{-1}{2}\)\(\Rightarrow\)1-x = 2x\(^2\)
\(\Rightarrow\)2x\(^2\)+ x-1 = 0\(\Rightarrow\)2x\(^2\)- 2x +x - 1 =0\(\Rightarrow\)(x -1 ) (2x + 1) = 0
\(\Rightarrow\)\(\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}}\)\(\orbr{\begin{cases}x=1\left(ktm\right)\\x=\frac{-1}{2}\left(tm\right)\end{cases}}\)
vậy x= \(\frac{-1}{2}\)
c, tớ chịu thôi mà tớ mỏi tay lắm òi. k cho tớ nhé