Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
Tỉ số giữa 10 quyển và 15 quyển:
10: 15 = 2/3
Nếu chia đều thì mỗi bạn nhận đc:
[15x 2 + 10x3] : [2+3] = 12 [quyển]
Vậy:....................
2,
1/2 + 1/3 + 1/4 + ... + 1/50 = [1 - 1/2] + [1-2/3] + ... + [1 - 49/50]
= 1 - 1/2 + 1 - 2/3 + ... + 1 - 49/50
= [1 + 1 + 1 +... + 1] - [1/2+2/3+3/4+...+49/50]
= 49 - [1/2+2/3+3/4+...+49/50]
Vậy 1/2 + 1/3 + 1/4 + ... + 1/50 không là số tự nhiên
3,
1/42 + 1/52 + ... +1/1002 < 1/3.4 + 1/4.5 + 1/5.6 + ... + 1/99.100
<=> 1/42 + 1/52 + ... +1/1002 < 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/99 - 1/100
<=> 1/42 + 1/52 + ... +1/1002 < 1/3 - 1/100
<=> E < 1/3 - 1/100
=> E < 1/3
Mà 1/3 - 1/100 = 97/300 > 1/5
=> 1/5 < E < 1/3
4, A:
2013/1 + 2014/2+2015/3+...+4023/2011+4024/2012 - 2012
= ( 2013/1 - 1)+(2014/2 - 1) + ( 2015/3 - 1)+...+ (4023/2011 - 1) + ( 4024/2012 - 1)
= 2012(1+1/2+1/3+...+ 1/2011+1/2012)
Vậy \(A=\frac{\text{(1+1/2+1/3+...+ 1/2011+1/2012)}}{\text{2012(1+1/2+1/3+...+ 1/2011+1/2012)}}=\frac{1}{2012}\)
Câu B mik sẽ làm sau, bây giờ mik bận
Tỉ số giữa 10 quyển và 15 quyển:
10:15=2/3
Vậy nếu chia cho cả lớp thì mõi bạn nhận được:
(15x2+10x3):5=12 quyển
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.......+\frac{1}{2^{2012}}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{2^2}+.........+\frac{1}{2^{2011}}\)
\(\Rightarrow2A-A=2-\frac{1}{2^{2012}}\)
\(\Rightarrow A=2-\frac{1}{2^{2012}}\)
Ta có: A = \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
2A = \(2\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
2A = \(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
2A - A = \(\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
A = \(2-\frac{1}{2^{2012}}\)
Đặt \(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
\(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
- Bn lấy 2A - A = A là ra nhé :))
Câu 1 :
Ta có :
\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(A=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{10000-1}{10000}\)
\(A=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{100^2-1}{100^2}\)
\(A=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{100^2}{100^2}-\frac{1}{100^2}\)
\(A=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{100^2}\)
\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
Do từ \(2\) đến \(100\) có \(100-2+1=99\) số \(1\) nên :
\(A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)< 99\) \(\left(1\right)\)
Đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) lại có :
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B< 1-\frac{1}{100}< 1\)
\(\Rightarrow\)\(A=99-B>99-1=98\)
\(\Rightarrow\)\(A>98\) \(\left(2\right)\)
Từ (1) và (2) suy ra :
\(98< A< 99\)
Vậy A không phải là số nguyên
Chúc bạn học tốt ~
1) Ta có : \(\frac{x-2}{4}=\frac{5+x}{3}\)
\(\Rightarrow\left(x-2\right).3=\left(5+x\right).4\)
\(\Rightarrow3x-6=20+4x\)
\(\Rightarrow3x=26+4x\)
\(\Rightarrow3x=26+x+3x\)
\(\Rightarrow0=26+x\)
\(\Rightarrow x=0-26\)
\(\Rightarrow x=-26\)
2) Ta có : \(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)
\(\Rightarrow\frac{1}{A}=1+2+2^2+...+2^{2012}\)
\(\Rightarrow\frac{2}{A}=2+2^2+2^3+...+2^{2013}\)
\(\Rightarrow\frac{2}{A}-\frac{1}{A}=\left(2+2^2+2^3+...+2^{2013}\right)-\left(1+2+2^2+...+2^{2012}\right)\)
\(\Rightarrow\frac{1}{A}=2^{2013}+1\)
\(\Rightarrow A=\frac{1}{2^{2013}+1}\)
đề là gì
\(M=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
Nên \(2.M=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2011}}\)
Suy ra \(2M-M=M.\left(2-1\right)=M=1-\frac{1}{2^{2011}}\)
Vậy \(M=1-\frac{1}{2^{2011}}\)