\(\fora...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

M=1+3+5....+(2n-1)

Số số hạng (2n-1-1)/2+1=n số hạng

Suy ra M=\(\frac{\left(1+2n-1\right).n}{2}=\frac{2.n^2}{2}=n^2\) vậy M là số chính phương

13 tháng 3 2018

toán lớp mấy

13 tháng 10 2019

có t i c k ko

13 tháng 10 2019

ha tuan anh

Trả lời đc rồi hãng nói đến t i c k 

Tham gia diễn đàn hỏi đáp mục đích chính là để kiếm điểm à

9 tháng 5 2017

i can't help you

sorry because i in grade 5

9 tháng 5 2017

yes me too in grade 5

5 tháng 2 2021

Ta có: SSH = (2n - 1 - 1) : 2 + 1 = n (số)

\(\Rightarrow M=\frac{\left(2n-1+1\right)n}{2}=\frac{2n^2}{2}=n^2\)

Vậy M là 1 số chính phương

\(M=1+3+5+........+\left(2n-1\right)\left(n\inℕ^∗\right)\)

          Có:  (2n-1-1):2+1=n số hạng

\(\Rightarrow M=\left(1+2n-1\right).n:2=2n.n:2=2n^2:2=n^2\)

Mà \(n\inℕ^∗\)

=>M là số chính phương

Vậy M là số chính phương

Chúc bn học tốt

9 tháng 5 2017

No, I can't. I will help you tomorrow!

31 tháng 12 2018

số số hạng của tổng M là :

[(2n-1) -1] :2+1

=( 2n-2) :2 +1

=2(n-1):2+1

= n-1+1=n

=>M = (2n-1+1)n:2

=> M = (2n-1+1) n:2

=> M = 2n.n:2 = n^2

=> M là số chính phương

24 tháng 3 2020

Nếu có bạn nào trả lời thì ngoài t.i.c.k đúng tớ còn pải làm thế nào để 'chọn câu trả lời này'??

24 tháng 3 2020

Gọi d là ƯCLN (2n+1;2n+3) (d thuộc N*)

=> (2n+3)-(2n+1) chia hết cho d

=> 2 chia hết cho d

Mà d thuộc N* => d={1;2}

Ta có 2n+1 không chia hết cho 2 và 2n+3 không chia hết cho 2

=> d=1

=> đpcm

31 tháng 12 2018

Số số hạng của tổng M là :

[(2n-1)-1] : 2+1

=(2n-2) :2+1

=2(n-1):2+1

=n-1+1

=n (số hạng)

=> M= (2n-1+1) n: 2

=> 2n.n:2

=>n.n=n^2

=> M là số chính phương

từ đoạn suy ra là ko hịu chi lun