Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : dễ rồi tính ra là xong.
Bài 2 :
Ta có :
\(M=1+3+5+...+\left(2n-1\right)\)
Số số hạng :
\(\frac{2n-1-1}{2}=\frac{2n-2}{2}=\frac{2\left(n-1\right)}{2}=n-1\)
Tổng :
\(\frac{\left(2n-1+1\right).\left(n-1\right)}{2}=\frac{2n\left(n-1\right)}{2}=n\left(n-1\right)\)
Vì \(n\left(n-1\right)\) không là số chính phương nên \(M\) không là số chính phương
Vậy M không là số chính phương.
Chúc bạn học tốt ~
Bài 2:
Có gì đó sai sai thì phải .... Theo mình được biết thì M là số chính phương
số số hạng của tổng M là :
[(2n-1) -1] :2+1
=( 2n-2) :2 +1
=2(n-1):2+1
= n-1+1=n
=>M = (2n-1+1)n:2
=> M = (2n-1+1) n:2
=> M = 2n.n:2 = n^2
=> M là số chính phương
\(M=1+3+5+........+\left(2n-1\right)\left(n\inℕ^∗\right)\)
Có: (2n-1-1):2+1=n số hạng
\(\Rightarrow M=\left(1+2n-1\right).n:2=2n.n:2=2n^2:2=n^2\)
Mà \(n\inℕ^∗\)
=>M là số chính phương
Vậy M là số chính phương
Chúc bn học tốt
M=1+3+5....+(2n-1)
Số số hạng (2n-1-1)/2+1=n số hạng
Suy ra M=\(\frac{\left(1+2n-1\right).n}{2}=\frac{2.n^2}{2}=n^2\) vậy M là số chính phương
BÀi 1
Để A \(\in\) Z
=>\(\left(n+2\right)⋮\left(n-5\right)\)
=>\([\left(n-5\right)+7]⋮\left(n-5\right)\)
=>\(7⋮\left(n-5\right)\)
=>\(n-5\in\left\{1;7;-1;-7\right\}\)
=>\(n\in\left\{6;13;4;-2\right\}\)
Vậy \(n\in\left\{6;13;4;-2\right\}\)
Ta có: \(A=1+3+5+7+...+\left(2n-1\right)\)
\(A=\left(\frac{\left(2n-1\right)-1}{2}+1\right)\left(2n-1+1\right):2\)
\(A=\left(\frac{2n-2}{2}+1\right).\frac{2n}{2}\)
\(A=\left(\frac{2\left(n-1\right)}{2}+1\right).n\)
\(A=\left(n-1+1\right).n\)
\(A=n.n\)
\(A=n^2\left(đpcm\right)\)
hok tốt!!
2n+5/n+1 = 2n+2+3/n+1 = 2n+2/n+1 + 3/n+1 = 2+3/n+1
Để phân số 2n+5/n+1 là số tự nhiên thì n+1 thuộc ước của 3
Mà Ư(3)={ 1;3;-1;-3}
Xét: n+1=1 thì n=0
n+1=3thì n=2
n+1=-1thì n=-2(loại)
n+1=-3thì n=-4(loại)
Vậy : Với n thuộc{0;2}thì p/s 2n=5/n+1 là STN
Chúc bn học tốt
Ta có: SSH = (2n - 1 - 1) : 2 + 1 = n (số)
\(\Rightarrow M=\frac{\left(2n-1+1\right)n}{2}=\frac{2n^2}{2}=n^2\)
Vậy M là 1 số chính phương