Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : dễ rồi tính ra là xong.
Bài 2 :
Ta có :
\(M=1+3+5+...+\left(2n-1\right)\)
Số số hạng :
\(\frac{2n-1-1}{2}=\frac{2n-2}{2}=\frac{2\left(n-1\right)}{2}=n-1\)
Tổng :
\(\frac{\left(2n-1+1\right).\left(n-1\right)}{2}=\frac{2n\left(n-1\right)}{2}=n\left(n-1\right)\)
Vì \(n\left(n-1\right)\) không là số chính phương nên \(M\) không là số chính phương
Vậy M không là số chính phương.
Chúc bạn học tốt ~
Bài 2:
Có gì đó sai sai thì phải .... Theo mình được biết thì M là số chính phương
số số hạng của tổng M là :
[(2n-1) -1] :2+1
=( 2n-2) :2 +1
=2(n-1):2+1
= n-1+1=n
=>M = (2n-1+1)n:2
=> M = (2n-1+1) n:2
=> M = 2n.n:2 = n^2
=> M là số chính phương
M=1+3+5....+(2n-1)
Số số hạng (2n-1-1)/2+1=n số hạng
Suy ra M=\(\frac{\left(1+2n-1\right).n}{2}=\frac{2.n^2}{2}=n^2\) vậy M là số chính phương
1.
Không biết là đề sai hay đúng nhưng hình như không có số nào
2
Ta có : 88888888 (n số 8)
=> Tổng của 88888888..... (n số 8) = 8n
8n - 9 + n
= 9n - 9
= 9.(n-1)
=> 88888888..... (n số 8) - 9 + n chia hết cho 9
3.
Tổng của các chữ số đó là
(1.2012) + 4 + (3.2012)
=2012 + 4 + 6036
=8052
Mà 8052 chia hết cho 2
=> 1111111111111111111...(2012 chữ số 1)43333333333333333333...(2012 chữ số 3) là hợp số
Số số hạng là \(\dfrac{2n-1-1}{2}+1=\dfrac{2n-2}{2}+1=n\left(số\right)\)
Tổng của các số hạng trong M là:
\(M=\left(2n-1+1\right)\cdot\dfrac{n}{2}=\dfrac{2n\cdot n}{2}=n^2\) là số chính phương
CÓ