\(\), where m^2+1
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2017

có 2 cặp số (m,n) là : (2,7);(4,13)

10 tháng 4 2017

bạn có thể giải chi tiết cho mk ko

19 tháng 3 2017

?????????????????????????????????????????????? Are you learning English or Math? I'm sure you are're mistake of English

19 tháng 3 2017

:v

16 tháng 10 2022

n=3; n=2

3 tháng 11 2016

Đề : Cho m và n là số chữ số của 22007 và 52007 khi viết ở hệ thập phân.Tính m + n

Ta có : 10m - 1 < 22007 < 10m ; 10n - 1 < 52007 < 10n

=> 10m - 1.10n - 1 < 22007.52007 < 10m.10n

<=> 10m + n - 2 < 102007 < 10m + n

=> m + n - 2 < 2007 < m + n => m + n - 2 ; 2007 ; m + n là 3 số tự nhiên liên tiếp nên m + n = 2007 + 1 = 2008

Đáp án : E

Ko hiểu thì hỏi mình. Cũng có bài toán tiếng Việt tương tự ở link sau,bạn tham khảo thêm nhé :

olm.vn/hoi-dap/question/17686.html  

3 tháng 11 2016

176386 nhé !

1.  Two bisector BD and CE of the triangle ABC intersect at O. Suppose that BD.CE = 2BO.OC . Denote by H the point in BC such that .\(OH⊥BC\) . Prove that AB.AC = 2HB.HC 2. Given a trapezoid ABCD with the based edges BC=3cm , DA=6cm ( AD//BC ). Then the length of the line EF ( \(E\in AB,F\in CD\) and EF // AD ) through the intersection point M of AC and BD is ............... ? 3. Let ABC be an equilateral triangle and a point M inside the triangle such that \(MA^2=MB^2+MC^2\) . Draw...
Đọc tiếp

1.  Two bisector BD and CE of the triangle ABC intersect at O. Suppose that BD.CE = 2BO.OC . Denote by H the point in BC such that .\(OH⊥BC\) . Prove that AB.AC = 2HB.HC

 

2. Given a trapezoid ABCD with the based edges BC=3cm , DA=6cm ( AD//BC ). Then the length of the line EF ( \(E\in AB,F\in CD\) and EF // AD ) through the intersection point M of AC and BD is ............... ?

 

3. Let ABC be an equilateral triangle and a point M inside the triangle such that \(MA^2=MB^2+MC^2\) . Draw an equilateral triangle ACD where \(D\ne B\) . Let the point N inside \(\Delta ACD\) such that AMN is an equilateral triangle. Determine \(\widehat{BMC}\) ?

 

4. Given an isosceles triangle ABC at A. Draw ray Cx being perpendicular to CA, BE perpendicular to Cx \(\left(E\in Cx\right)\) . Let M be the midpoint of BE, and D be the intersection point of AM and Cx. Prove that \(BD⊥BC\)

 

0
19 tháng 12 2016

Mọi người giải ra giúp ạ, cảm ơn nhiều!

3 tháng 2 2017

bài 1 là 3

3 tháng 2 2017

làm như thế nào vậy ạ