K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2016

để x có giá tri nguyên thì 4x^2 phai chia hết cho x+1 mũ 2 

9 tháng 10 2017

Xét \(x=0\)

\(\Rightarrow M=1\)không phải số nguyên tố.

Xét \(x>0\) thì ta có:

\(M=x^{1999}+x^{1997}+1=\left(x^{1999}-x\right)+\left(x^{1997}-x^2\right)+x^2+x+1\)

\(=x\left(\left(x^3\right)^{666}-1\right)+\left(\left(x^3\right)^{665}-1\right)+x^2+x+1\)

\(=\left(x^2+x+1\right)A+\left(x^2+x+1\right)B+x^2+x+1\)

\(=\left(x^2+x+1\right)C\)

Vì M là số nguyên tố nên nó có 2 ước là 1 và chính nó. Ta lại thấy \(x^2+x+1>1\)

\(\Rightarrow x^{1999}+x^{1997}+1=x^2+x+1\)

\(\Leftrightarrow\left(x^{1999}-x^2\right)+\left(x^{1997}-x\right)=0\)

Ta có: \(\hept{\begin{cases}x^{1999}-x^2\ge0\\x^{1997}-x\ge0\end{cases}}\)

Dấu = xảy ra khi \(x=1\)

9 tháng 10 2017

Ta có : M=x1999+x1997+1=x(x1998−1)+x2(x1995−1)+x2+x+1=BS(x2+x+1)x1999+x1997+1=x(x1998−1)+x2(x1995−1)+x2+x+1=BS(x2+x+1)

Do đó , để M là số nguyên tố ⇔M=x2+x+1⇔M=x2+x+1

                                               ⇔x=1

5 tháng 8 2018

Câu 2:  \(x^2-5x+1=0\Leftrightarrow x^2-2.x.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}+1=0\)

\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2-\frac{21}{4}=0\Leftrightarrow x-\frac{5}{2}=\pm\frac{\sqrt{21}}{2}\)\(\Leftrightarrow x=\pm\frac{\sqrt{21}+5}{2}\)

Thay vào biểu thức đó: 

\(\frac{x^2+1}{x^2}=1+\frac{1}{x^2}=1+\frac{1}{\frac{\left(\sqrt{21}+5\right)^2}{4}}\)

\(=1+\frac{1}{\frac{21+10\sqrt{21}+25}{4}}=1+\frac{4}{46+10\sqrt{21}}=\frac{50+10\sqrt{21}}{46+10\sqrt{21}}\)

\(=\frac{25+5\sqrt{10}}{23+5\sqrt{10}}\). ĐS...

1 tháng 1 2022

Answer:

\(M=\left(\frac{x}{x-3}+\frac{3x^2+3}{9-x^2}+\frac{2x}{x+3}\right):\frac{x+1}{3-x}\)

ĐKXĐ: 

\(x-3\ne0\)

\(9-x^2\ne0\)

\(x+3\ne0\)

\(x+1\ne0\)

(Ý này trình bày trong vở bạn xếp vào vào cái ngoặc "và" nhé!)

\(\Leftrightarrow\hept{\begin{cases}x\ne\pm3\\x\ne-1\end{cases}}\)

\(=\frac{-x\left(3+x\right)+3x^2+3+2x\left(3-x\right)}{\left(3-x\right)\left(3+x\right)}.\frac{\left(3-x\right)}{x+1}\)

\(=\frac{9x+3}{\left(3+x\right)\left(x+1\right)}\)

\(=\frac{3}{x+1}\)

Có: \(x^2+x-6=0\)

\(\Leftrightarrow x^2+6x-x-6=0\)

\(\Leftrightarrow x\left(x+6\right)-\left(x+6\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+6=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=1\end{cases}}\) (Thoả mãn)

Trường hợp 1: \(x=1\Leftrightarrow M=\frac{3}{1+1}=\frac{3}{2}\)

Trường hợp 2: \(x=-6\Leftrightarrow M=\frac{3}{-6+1}=\frac{-3}{5}\)

Để cho biểu thức M nguyên thì \(\frac{3}{x+1}\inℤ\)

\(\Rightarrow x+1\inƯ\left(3\right)\)

\(\Rightarrow\orbr{\begin{cases}x+1=1\\x+1=3\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\) (Thoả mãn)

18 tháng 12 2019

\(P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}\)

a) ĐKXĐ: x \(\ne\pm\frac{1}{2}\)

b) Theo đề bài ta có:

\(2x^2+x=0\)

\(\Rightarrow x\left(2x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\2x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{2}\left(Loại\right)\end{cases}}}\)

Thay x = 0 (thỏa mãn điều kiện) vào P ta có:

\(P=\frac{0-0+0-1}{0-0+1}=\frac{-1}{1}=-1\)

Vậy khi x = 0 thì P = -1

c) \(P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{\left(2x-1\right)^3}{\left(2x-1\right)^2}=2x-1\)

Để P \(\inℤ\Leftrightarrow2x-1\inℤ\)

Mà -1\(\inℤ;x\inℤ\Rightarrow-1⋮2x\)

\(\Rightarrow2x\inƯ\left(-1\right)=\left\{1;-1\right\}\)

Ta có bảng giá trị:

2x1-1
x\(\frac{1}{2}\)\(-\frac{1}{2}\)
 LoạiLoại

Vậy không có x thỏa mãn P \(\inℤ\)

d) Với x \(\ne\pm\frac{1}{2};P=2\)

\(\Leftrightarrow2x-1=2\)

\(\Leftrightarrow2x=3\)

\(\Leftrightarrow x=\frac{3}{2}\)

Vậy \(x=\frac{3}{2}\)thì \(P=2\)

9 tháng 8 2017

A= x^2-6x+10

A=x^2-3x-3x+9+1

A=x(x-3)-3(x-3)+1

A=(x-3)(x-3)+1

A=(x-3)^2+1

Vì (x-3)^2 \(\ge\)0\(\forall x\)

->(x-3)^2+1\(\ge\)1

=>ĐPCM

16 tháng 7 2020

1. a) \(A=x\left(x-6\right)+10=x^2-6x+9+1=\left(x-3\right)^2+1\)

Vì \(\left(x-3\right)^2\ge0\forall x\)\(\Rightarrow\left(x-3\right)^2+1\ge1\)

hay \(A\ge1\)\(\Rightarrow\)A luôn dương ( đpcm )

b) \(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

\(=\left(x-1\right)^2+\left(3y-1\right)^2+1\)

Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(3y-1\right)^2\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x-1\right)^2+\left(3y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\forall x,y\)

hay \(B\ge1\)\(\Rightarrow\)B luôn dương ( đpcm )