K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2\sqrt{3}=\sqrt{12}< \sqrt{18}=3\sqrt{2}\)

=>\(2^{2\sqrt{3}}< 2^{3\sqrt{2}}\)

15 tháng 8 2023

\(5^{\log_{125}64}=5^{\log_{5^3}64}=5^{\dfrac{1}{3}\log_564}=5^{\log_564^{\dfrac{1}{3}}}=5^{\log_5\sqrt[3]{64}}=5^{\log_54}=4\)

\(=5^{log_{5^3}64}=5^{\dfrac{1}{3}\cdot log_564}\)

\(=5^{log_5\sqrt[3]{64}}=5^{log_54}=4\)

Vì \(\sqrt{2}>1\)

nên \(10^{\sqrt{2}}>10^1=10\)

AH
Akai Haruma
Giáo viên
29 tháng 7 2020

Bạn chú ý gõ đề bằng công thức toán (hộp biểu tượng $\sum$) trên thanh công cụ. Nhìn đề rối mắt thế này thật tình không ai muốn đọc chứ đừng nói đến giúp =)))

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Số vận động viên được khảo sát là \(n = 3 + 8 + 12 + 12 + 4 = 39\).

Gọi \({x_1};{x_2};...;{x_{39}}\) là thời gian luyện tập của 39 vận động viên được xếp theo thứ tự không giảm. Ta phải chọn các vận động viên có thời gian luyện tập tương ứng là \({x_{30}};{x_{31}};...;{x_{39}}\)

Ta có:

\({x_1},{x_2},{x_3} \in \left[ {0;2} \right);{x_4},...,{x_{11}} \in \left[ {2;4} \right);{x_{12}},...,{x_{23}} \in \left[ {4;6} \right);{x_{24}},...,{x_{35}} \in \left[ {6;8} \right);{x_{36}},...,{x_{39}} \in \left[ {8;10} \right)\). Vậy \({x_{30}}\) thuộc nhóm \(\begin{array}{*{20}{l}}{\left[ {6;8} \right)}\end{array}\).

Ta có: \(n = 29;{n_j} = 12;C = 3 + 8 + 12 = 23;{u_j} = 6;{u_{j + 1}} = 8\)

\({x_{30}} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right) = 6 + \frac{{\frac{{3.39}}{4} - 23}}{{12}}.\left( {8 - 6} \right) \approx 7,04\)

Vậy huấn luyện viên nên chọn các vận động viên có thời gian luyện tập từ 7,04 giờ trở lên.

a: \(=\dfrac{5}{4}\cdot3=\dfrac{15}{4}\)

b: \(=\sqrt[5]{\dfrac{98}{64}\cdot343}=\sqrt[5]{\left(\dfrac{7}{2}\right)^5}=\dfrac{7}{2}\)

\(=log_35^2-log_350+log_36\)

\(=log_3\left(\dfrac{25}{50}\cdot6\right)=log_33=1\)

14 tháng 8 2023

\(2\log_35-\log_350+\dfrac{1}{2}\log_336=\log_35^2-\log_350+\log_336^{\dfrac{1}{2}}=\log_325-\log_350+\log_36=\log_3\left(\dfrac{25}{50}.6\right)=\log_33=1\)

\(pH=-log\left[H^+\right]=-log\left[10^{-4}\right]=4\)

\(pH=-log\left[H^+\right]=-log\left[10^{-5}\right]=5\)