Lớp 12B có 25 học sinh được chia thành hai nhóm I và II sao cho mỗi nhóm đều có học sinh nam...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2019

Đáp án B

Gọi x,y lần lượt là số học sinh nữ ở nhóm I và nhóm II. Khi đó số học sinh nam ở nhóm II là  25 − 9 + x − y = 16 − x − y   . Điều kiện để mỗi nhóm đều có học sinh nam và nữ là x ≥ 1, y ≥ 1,16 − x − y ≥ 1 ;    x , y ∈ ℕ .

Xác suất để chọn ra được hai học sinh nam bằng  C 9 1 C 16 − x − y 1 C 9 + x 1 C 16 − x 1 = 0,54

⇔ 9 16 − x − y 9 + x 16 − x = 0,54 ⇔ 144 − 9 x − 9 y 144 + 7 x − x 2 = 0,54 ⇔ y = 184 25 − 71 50 x + 3 50 x 2

Ta có hệ điều kiện sau  x ≥ 1 184 25 − 71 50 x + 3 50 x 2 ≥ 1 16 − x − 184 25 − 71 50 x + 3 50 x 2 ≥ 1 x ∈ ℕ

⇔ x ≥ 1 3 50 x 2 − 71 50 x + 159 25 ≥ 0 − 3 50 x 2 + 21 50 x + 191 25 ≥ 0 x ∈ ℕ ⇔ x ≥ 1 x ≥ 53 3 x ≤ 6 21 − 5 201 6 ≤ x ≤ 21 + 5 201 6 x ∈ ℕ ⇔ 1 ≤ x ≤ 6 x ∈ ℕ

Ta có bảng các giá trị của :

Vậy ta tìm được hai cặp nghiệm nguyên x ; y  thỏa mãn điều kiện là   1 ; 6 và  6 ; 1   .

Xác suất để chọn ra hai học sinh nữ là C x 1 C y 1 C 9 + x 1 C 16 − x 1 = x y 9 + x 16 − x .

Nếu x ; y ∈ 1 ; 6 , 6 ; 1  thì xác suất này bằng 1 25 = 0,04 .

29 tháng 12 2018

Đáp án C

21 tháng 4 2018

Gọi A: “mỗi nhóm có đúng một học sinh nữ”.

+) Số cách xếp 3 học sinh nữ vào 3 nhóm là 3! cách.

+) Chọn 3 học sinh nam cho nhóm thứ ba có 1 cách.

29 tháng 11 2019

25 tháng 4 2018

Đáp án C.

Phương pháp: 

Xác suất của biến cố A:

P A = n A n Ω .  

Cách giải:                                            

Số phần tử của không gian mẫu:

n Ω = C 9 3  

A: “Số học sinh nam nhiều hơn số học sinh nữ”

Ta có 2 trường hợp:  

+) Chọn ra 2 nam, 1 nữ:

+) Chọn ra 3 nam, 0 nữ.

⇒ n A = C 5 2 C 4 1 + C 5 3  

⇒ P A = n A n Ω = C 5 2 C 4 1 + C 5 3 C 9 3 = 25 42  

27 tháng 3 2018

Đáp án A

Không gian mẫu: C 12 4 . C 8 4 . 1 = 34650  

Chỉ có 3 nữ và chia mỗi nhóm có đúng 1 nữ và 3 nam.

Nhóm 2 có C 3 1 . C 9 3 = 252 cách.

Lúc đó còn lại 2 nữ, 6 nam, nhóm thứ 2 có :

  C 2 1 . C 9 3 = 40 cách chọn.

Cuối cùng còn 4 người là một nhóm: có 1 cách.

Theo quy tắc nhân thì có: 252.40.2=10080 cách.

Vậy xác suất cần tìm là: P = 10080 34650 = 16 55  .

4 tháng 10 2019

Đáp án B

14 tháng 3 2019

Đáp án D

Số cách chia tổ thành 3 nhóm đi làm 3 công việc khác nhau là  C 12 4 . C 8 4 . C 4 4 = 34650

Với công việc thứ nhất có C 9 3 C 3 1  cách chọn 3 nam, 1 nữ.

Với công việc thứ nhất có C 6 3 C 2 1 cách chọn 3 nam, 1 nữ.

Với công việc thứ nhất có C 3 3 C 1 1 cách chọn 3 nam, 1 nữ.

Vậy xác suất cần tính là P = C 9 3 C 3 1 . C 6 3 C 2 1 . C 3 3 C 1 1 C 12 4 C 8 4 C 4 4 = 16 55

25 tháng 2 2019

13 tháng 6 2019