Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\log_{5^{-2}}5^{\frac{5}{4}}=-\frac{1}{2}.\frac{5}{4}.\log_55=-\frac{5}{8}\)
b) \(B=9^{\frac{1}{2}\log_22-2\log_{27}3}=3^{\log_32-\frac{3}{4}\log_33}=\frac{2}{3^{\frac{3}{4}}}=\frac{2}{3\sqrt[3]{3}}\)
c) \(C=\log_3\log_29=\log_3\log_22^3=\log_33=1\)
d) Ta có \(D=\log_{\frac{1}{3}}6^2-\log_{\frac{1}{3}}400^{\frac{1}{2}}+\log_{\frac{1}{3}}\left(\sqrt[3]{45}\right)\)
\(=\log_{\frac{1}{3}}36-\log_{\frac{1}{3}}20+\log_{\frac{1}{3}}45\)
\(=\log_{\frac{1}{3}}\frac{36.45}{20}=\log_{3^{-1}}81=-\log_33^4=-4\)
a) . = = = = = 9.
b) : = = = = = = 8.
c) + = + = + = + = + = 40.
d) - = - = - = - = 121.
a) \(9^{\dfrac{2}{5}}.27^{\dfrac{2}{5}}=\left(9.27\right)^{\dfrac{2}{5}}=\left(3^2.3^3\right)^{\dfrac{2}{5}}=3^{5.\dfrac{2}{5}}=3^2=9\)
b) \(=\left(\dfrac{144}{9}\right)^{\dfrac{3}{4}}=\left(\dfrac{12}{3}\right)^{2.\dfrac{3}{4}}=4^{\dfrac{3}{2}}=2^{2.\dfrac{3}{2}}=2^3=8\)
c) \(=\left(\dfrac{1}{2}\right)^{4.\left(-0,75\right)}+\left(\dfrac{1}{4}\right)^{-\dfrac{5}{2}}\)
\(=\left(\dfrac{1}{2}\right)^{-3}+\left(\dfrac{1}{2}\right)^{-5}\)
\(=2^3+2^5=40\)
d) \(=\left(0,2\right)^{2.\left(-1.5\right)}-\left(0,5\right)^{3.\dfrac{-2}{3}}\)
\(=\left(\dfrac{1}{5}\right)^{-3}-\left(\dfrac{1}{2}\right)^{-2}\)
\(=5^3-2^2=121\)
\(A=17\frac{2}{31}-\left(\frac{15}{17}+6\frac{2}{31}\right)=\left(17\frac{2}{31}-6\frac{2}{31}\right)-\frac{15}{17}=11-\frac{15}{17}=10+\left(1-\frac{15}{17}\right)=10\frac{2}{17}\)
\(B=\left(31\frac{6}{13}-36\frac{6}{13}\right)+5\frac{9}{41}=-5+5\frac{9}{41}=\frac{9}{41}\)
C=\(\left(27\frac{51}{59}-7\frac{51}{59}\right)+\frac{1}{3}=20+\frac{1}{3}=20\frac{1}{3}\)
\(D=\left(13\frac{29}{31}-2\frac{28}{31}\right)+\left(4-3\frac{7}{8}\right)=11\frac{1}{31}+\frac{1}{8}=11\frac{8+31}{31.8}=11\frac{39}{248}\)
Toán 12 đây chắc vội thế cơ à?
Em giúp cho
Câu hỏi của Kaitou Kid - Toán lớp 9 - Học toán với OnlineMath
áp án:
Với 3 số 3, cách làm rất đơn giản: 3 x 3 - 3 = 6.
Sử dụng phép 6 + 6 - 6 = 6 đối với 3 số 6.
Đối với 3 số 4, ta có thể sử dụng phép căn bậc hai từng số rồi tính tổng của chúng.
Với 3 số 9, ta sử dụng phép căn bậc hai của 9 thành 3 rồi tính như trong trường hợp 3 số 3.
Cách làm đối với 3 số 5 và 3 số 7 tương tự nhau:
5 + 5 : 5 = 6
7 - 7 : 7 = 6
3 số 8 là trường hợp dễ gây nhầm lẫn nhất vì nhiều người sẽ sử dụng phép căn bậc ba của 8 bằng 2 rồi tính tổng của chúng. Tuy nhiên, người ra đề quy định, người giải không được thêm bất kỳ số tự nhiên nào trong khi ký hiệu căn bậc ba có số 3.
Trong trường hợp này, Ty Yann dùng hai lần căn bậc hai của 8 + 8 (tương đương căn bậc 4 của 16) bằng 2. Sau đó, ông dùng phép tính 8 - 2 = 6.
Với 3 số 1, tác giả dùng phép giai thừa:
(1 + 1 + 1)! = 3! = 3 x 2 x 1 = 6.
5.
\(y'=1-\frac{4}{\left(x-3\right)^2}=0\Leftrightarrow\left(x-3\right)^2=4\)
\(\Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=1< 3\left(l\right)\end{matrix}\right.\)
BBT:
Từ BBT ta có \(y_{min}=y\left(5\right)=7\)
\(\Rightarrow m=7\)
3.
\(y'=-2x^2-6x+m\)
Hàm đã cho nghịch biến trên R khi và chỉ khi \(y'\le0;\forall x\)
\(\Leftrightarrow\Delta'=9+2m\le0\)
\(\Rightarrow m\le-\frac{9}{2}\)
4.
\(y'=x^2-mx-2m-3\)
Hàm đồng biến trên khoảng đã cho khi và chỉ khi \(y'\ge0;\forall x>-2\)
\(\Leftrightarrow x^2-mx-2m-3\ge0\)
\(\Leftrightarrow x^2-3\ge m\left(x+2\right)\Leftrightarrow m\le\frac{x^2-3}{x+2}\)
\(\Leftrightarrow m\le\min\limits_{x>-2}\frac{x^2-3}{x+2}\)
Xét \(g\left(x\right)=\frac{x^2-3}{x+2}\) trên \(\left(-2;+\infty\right)\Rightarrow g'\left(x\right)=\frac{x^2+4x+3}{\left(x+2\right)^2}=0\Rightarrow x=-1\)
\(g\left(-1\right)=-2\Rightarrow m\le-2\)
Chọn D