\(\lim\limits_{x\rightarrow2^-}\dfrac{3x^2+x-1}{2x^2-5x+2}\) 

+ Cho mình hỏi khi tử...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giới hạn đến 2- thì là x nhỏ hơn 2, giới hạn đến 2+ thì là lớn hơn 2

Mà thật ra là bạn chỉ nên quan đến khi x tiến đến 2- hay 2+ khi có dấu căn hoặc là giá trị tuyệt đối thôi, còn trong những dạng này thì thay như bình thường. Mẫu bằng 0 thì xem trên tử, tử bằng 0 thì biến đổi hoặc tử khác 0 thì sẽ ra kết quả luôn

\(\lim\limits_{x\rightarrow2^-}\dfrac{3x^2+x-1}{2x^2-5x+2}\)

\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow2^-}3x^2+x-1=3\cdot2^2+2-1=3\cdot4+1=13>0\\\lim\limits_{x\rightarrow2^-}2x^2-5x+2=2\cdot2^2-5\cdot2+2=0\\\end{matrix}\right.\)

 

NV
25 tháng 1 2024

Giới hạn 1 phía thì gần như bạn kia nói (mặc dù cuối cùng lại kết luận sai). Với \(x\rightarrow2^-\) thì đồng nghĩa \(x< 2\), nên khi đó nhìn lên khu vực xét dấu của \(2x^2-5x+2\) ta sẽ biết nó âm hay dương.

Nếu giới hạn \(x\rightarrow2\) mà tử, mẫu có cùng nhân tử \(x-2\) (nghĩa là rút gọn được) thì làm bình thường. Còn nếu chỉ có mẫu tiến tới 0, tử tiến tới 1 số khác 0 thì có thể kết luận ngay là giới hạn này ko tồn tại (ngoại trừ trường hợp dấu của mẫu số ko đổi khi x đi qua 2, ví dụ như \(\left(2x^2-5x+2\right)^2\) thì nó luôn dương, hoặc \(\left|2x^2-5x+2\right|\) cũng vậy)

Ví dụ cụ thể: \(\lim\limits_{x\rightarrow2^-}\dfrac{3x^2+x-1}{2x^2-5x+2}=-\infty\)

\(\lim\limits_{x\rightarrow2}\dfrac{3x^2+x-1}{2x^2-5x+2}\) không tồn tại.

\(\lim\limits_{x\rightarrow2}\dfrac{3x^2+x-1}{\left|2x^2-5x+2\right|}=+\infty\)

\(\lim\limits_{x\rightarrow2}\dfrac{3x^2+x-1}{-\left(2x^2-5x+2\right)^2}=-\infty\)

Theo định nghĩa về giới hạn tại 1 điểm: giới hạn tại 1 điểm chỉ tồn tại khi giới hạn trái và giới hạn phải tại đó bằng nhau.

Nghĩa là muốn \(\lim\limits_{x\rightarrow a}f\left(x\right)\) thì \(\lim\limits_{x\rightarrow a^+}f\left(x\right)=\lim\limits_{x\rightarrow a^-}f\left(x\right)\)

Trong ví dụ của em \(\lim\limits_{x\rightarrow2^-}f\left(x\right)=-\infty\) còn \(\lim\limits_{x\rightarrow2^+}f\left(x\right)=+\infty\)

Rõ ràng là \(-\infty\ne+\infty\) nên \(\lim\limits_{x\rightarrow2}\dfrac{3x^2+x-1}{2x^2-5x+2}\) ko tồn tại

23 tháng 10 2017

Giải bài 11 trang 178 sgk Đại số 11 | Để học tốt Toán 11

4 tháng 4 2017

a) Ta có (x - 2)2 = 0 và (x - 2)2 > 0 với ∀x ≠ 2 và (3x - 5) = 3.2 - 5 = 1 > 0.

Do đó = +∞.

b) Ta có (x - 1) và x - 1 < 0 với ∀x < 1 và (2x - 7) = 2.1 - 7 = -5 <0.

Do đó = +∞.

c) Ta có (x - 1) = 0 và x - 1 > 0 với ∀x > 1 và (2x - 7) = 2.1 - 7 = -5 < 0.

Do đó = -∞.



4 tháng 4 2017

Giỏi quá ta, chắc là hs cao tuổi nhất ...

9 tháng 9 2018

- Khi biến x dần tới dương vô cực, thì f(x) dần tới giá trị 0.

- Khi biến x dần tới âm vô cực, thì f(x) dần tới giá trị 0.

NV
27 tháng 2 2020

Bạn tự hiểu là giới hạn khi x tới 2:

\(=\frac{x\left(x-2\right)\left[2\sqrt{x+2}+3x-2\right]}{4\left(x+2\right)-\left(3x-2\right)^2}=\frac{x\left(x-2\right)\left[2\sqrt{x+2}+3x-2\right]}{-9x^2+16x+4}=\frac{x\left(x-2\right)\left[2\sqrt{x+2}+3x-2\right]}{\left(x-2\right)\left(-9x-2\right)}\)

\(=\frac{x\left[2\sqrt{x+2}+3x-2\right]}{-9x-x}=\frac{2\left[2\sqrt{4}+6-2\right]}{-18-2}=...\)

4 tháng 5 2016

Ta có \(\frac{x^n-nx+n-1}{\left(x-1\right)^2}=\frac{\left(x^n-1\right)-n\left(x-1\right)}{\left(x-1\right)^2}\)

                            \(=\frac{\left(x-1\right)\left(x^{n-1}+x^{n-1}+....+x+1-n\right)}{\left(x-1\right)^2}\)  (1)

Từ (1) suy ra :

      \(L=\lim\limits_{x\rightarrow1}\frac{x^{n-1}+x^{n-2}+.....+x-\left(n-1\right)}{x-1}\) (2)

     \(L=\lim\limits_{x\rightarrow1}\frac{\left(x^{n-1}-1\right)+\left(x^{n-2}-1\right)+.....+\left(x-1\right)}{x-1}\)

         \(=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left[\left(x^{n-1}+x^{n-3}+.....+x+1\right)+.....+\left(x+1\right)+1\right]}{x-1}\)

         \(=\lim\limits_{x\rightarrow1}\left[1+\left(x+1\right)+....+\left(x^{n-2}+x^{n-3}+.....+x+1\right)\right]\)

          \(=1+2+....+\left(n-1\right)=\frac{n\left(n-1\right)}{2}\)

13 tháng 1 2020

\(\lim\limits_{x\rightarrow+\infty}\left(ax-\sqrt{bx^2-2x+2018}\right)=\lim\limits_{x\rightarrow+\infty}x.\lim\limits_{x\rightarrow+\infty}\left(a-\sqrt{b}\right)=\pm\infty\)

Còn tuỳ vào độ lớn của a và b

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Đúng là giá trị giới hạn còn phụ thuộc vào giá trị của $a,b$ mới có thể khẳng định nhưng dòng công thức bạn viết ở trên chưa đúng đâu nhé.

4 tháng 4 2017

a) Hàm số f(x) = xác định trên R\{} và ta có x = 4 ∈ (;+∞).

Giả sử (xn) là dãy số bất kì và xn ∈ (;+∞); xn ≠ 4 và xn → 4 khi n → +∞.

Ta có lim f(xn) = lim = = .

Vậy = .

b) Hàm số f(x) = xác định trên R.

Giả sử (xn) là dãy số bất kì và xn → +∞ khi n → +∞.

Ta có lim f(xn) = lim = lim = -5.

Vậy = -5.



4 tháng 5 2016

Xét giới hạn \(L=\lim\limits_{x\rightarrow2}\frac{x^2-5x+6}{x^3-x^2-x-2}\)

                         \(=\lim\limits_{x\rightarrow2}\frac{\left(x-2\right)\left(x-3\right)}{\left(x-2\right)\left(x^2+x+1\right)}=\lim\limits_{x\rightarrow2}\frac{x-3}{x^2+x+1}=-\frac{1}{7}\)