\(\hept{\begin{cases}a,b,c,d,e,g\in Z\\a^2+b^2+c^2+d^2+e^2=g^2\end{cases}}\)

Pr...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2016

Giải bằng Tiếng Việt thím nhá =))

Giả sử cả 5 số a; b; c; d; e đều lẻ

=> a2; b2; c2; d2; e2 cũng đều lẻ

Ta đã biết số chính phương chia cho 8 chỉ có thể dư 0; 1 hoặc 4 nếu số chính phương đó thuộc N

Mà a2; b2; c2; d2; e2 lẻ nên cả 5 số này đều chia 8 dư 1

=> g2 = a2 + b2 + c2 + d2 + e2 chia 8 dư 5, không là số chính phương

Do đó, trong 5 số a; b; c; d; e; g tồn tại ít nhất 1 số chẵn

=> abcdeg chia hết cho 2 (đpcm)

8 tháng 11 2016

Đúng y như cách giải của t luôn :) 

11 tháng 2 2022

anh làm mẫu 2 câu còn lại em tự làm cho quen nhé, mấy cái hpt như này thì em dùng phương pháp cộng đại số là tối ưu nhất 

a, \(\hept{\begin{cases}2x+y=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=6\\y=x-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

b, \(\hept{\begin{cases}2x-3y=3\\2x+5y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}8y=2\\x=\frac{3+3y}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{1}{4}\\x=\frac{15}{8}\end{cases}}}\)

31 tháng 12 2018

trừ cho nhau là xong

1 tháng 2 2019

Nói nghe có vẻ dễ ha Trần Hữu Ngọc Minh 

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)TH1: Với a+b+c=0\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)Ta...
Đọc tiếp

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

TH1: Với a+b+c=0\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

Ta có:\(S=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

\(=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)

\(=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}\)

\(=-1\)

TH2: \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\left(1\right)\)

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0;\forall a,b,c\\\left(b-c\right)^2\ge0;\forall a,b,c\\\left(c-a\right)^2\ge0;\forall a,b,c\end{cases}}\)\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0;\forall a,b,c\left(2\right)\)

Từ (1) và (2)\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c\)

Ta có: \(S=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

\(=2.2.2=8\)

Vậy .... ( ko bít ghi kiểu gì luôn -.- )

0
5 tháng 7 2018

Theo mình là chẵn

Trả lời :

Vì \(\frac{x}{a}+\frac{y}{b}=\frac{z}{c}=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1^2\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1\left(dpcm\right)\)

Study ưell

Không chắc 

6 tháng 8 2019

cj mai>>>>