\(\left|x\right|-\left|2x+3\right|=x-1\)

\(\left|2x+3\right|-2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2018

Làm tiếp nè :

2) / 2x + 4/ = 2x - 5

Do : / 2x + 4 / ≥ 0 ∀x

⇒ 2x - 5 ≥ 0

⇔ x ≥ \(\dfrac{5}{2}\)

Bình phương hai vế của phương trình , ta có :

( 2x + 4)2 = ( 2x - 5)2

⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0

⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0

⇔ 9( 4x - 1) = 0

⇔ x = \(\dfrac{1}{4}\) ( KTM)

Vậy , phương trình vô nghiệm .

3) / x + 3/ = 3x - 1

Do : / x + 3 / ≥ 0 ∀x

⇒ 3x - 1 ≥ 0

⇔ x ≥ \(\dfrac{1}{3}\)

Bình phương hai vế của phương trình , ta có :

( x + 3)2 = ( 3x - 1)2

⇔ ( x + 3)2 - ( 3x - 1)2 = 0

⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0

⇔ ( 4 - 2x)( 4x + 2) = 0

⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)

KL......

4) / x - 4/ + 3x = 5

⇔ / x - 4/ = 5 - 3x

Do : / x - 4/ ≥ 0 ∀x

⇒ 5 - 3x ≥ 0

⇔ x ≤ \(\dfrac{-5}{3}\)

Bình phương cả hai vế của phương trình , ta có :

( x - 4)2 = ( 5 - 3x)2

⇔ ( x - 4)2 - ( 5 - 3x)2 = 0

⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0

⇔ ( 4x - 9)( 1 - 2x) = 0

⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)

KL......


Làm tương tự với các phần khác nha

11 tháng 6 2018

1)\(\left|4x\right|=3x+12\)

\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)

\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)

\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)

Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)

1: Ta có: |2x-3|=|x+5|

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=x+5\\2x-3=-x-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-3-x-5=0\\2x-3+x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\frac{2}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{8;\frac{-2}{3}\right\}\)

2: Ta có: |4-2x|=|3x|

\(\Leftrightarrow\left[{}\begin{matrix}4-2x=3x\\4-2x=-3x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4-2x-3x=0\\4-2x+3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-5x+4=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-5x=-4\\x=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{5}\\x=-4\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{4}{5};-4\right\}\)

3: Ta có: |4x-5|-|2x+1|=0

\(\Leftrightarrow\left|4x-5\right|=\left|2x+1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-5=2x+1\\4x-5=-2x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x-5-2x-1=0\\4x-5+2x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\6x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\6x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{3;\frac{2}{3}\right\}\)

4: Ta có: \(\left|0.5x-2\right|-\left|x+\frac{2}{3}\right|=0\)

\(\Leftrightarrow\left|0.5x-2\right|=\left|x+\frac{2}{3}\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}x-2=x+\frac{2}{3}\\\frac{1}{2}x-2=-x-\frac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}x-2-x-\frac{2}{3}=0\\\frac{1}{2}x-2+x+\frac{2}{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{-1}{2}x-\frac{8}{3}=0\\\frac{3}{2}x-\frac{4}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{-1}{2}x=\frac{8}{3}\\\frac{3}{2}x=\frac{4}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{3}:\frac{-1}{2}=\frac{8}{3}\cdot\left(-2\right)=\frac{-16}{3}\\x=\frac{4}{3}:\frac{3}{2}=\frac{4}{3}\cdot\frac{2}{3}=\frac{8}{9}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{-16}{3};\frac{8}{9}\right\}\)

8 tháng 7 2017

len google di ban

mk chua hoc bai nay

15 tháng 3 2018

Mấy câu này dễ mà,động não lên chứ bạn:v

Link______________Link

h) \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\)

\(\ge\left|x-1+3-x\right|=2\)

\(\Rightarrow x+1>2\Leftrightarrow x>1\)

Vậy: \(\left\{{}\begin{matrix}x>1\\x\in R\end{matrix}\right.\)

Câu b xét khoảng tương tự với cái link t đưa thôi

hơi bức xúc rồi đó

tau chỉ muốn kiểm tra lại thôi

a) Ta có: \(5x^2-3x\left(x+2\right)\)

\(=5x^2-3x^2-6x\)

\(=2x^2-6x\)

b) Ta có: \(3x\left(x-5\right)-5x\left(x+7\right)\)

\(=3x^2-15x-5x^2-35x\)

\(=-2x^2-50x\)

c) Ta có: \(3x^2y\left(2x^2-y\right)-2x^2\left(2x^2y-y^2\right)\)

\(=3x^2y\left(2x^2-y\right)-2x^2y\left(2x^2-y\right)\)

\(=x^2y\left(2x^2-y\right)=2x^4y-x^2y^2\)

d) Ta có: \(3x^2\left(2y-1\right)-\left[2x^2\cdot\left(5y-3\right)-2x\left(x-1\right)\right]\)

\(=6x^2y-3x^2-\left[10x^2y-6x^2-2x^2+2x\right]\)

\(=6x^2y-3x^2-10x^2y+6x^2+2x^2-2x\)

\(=-4x^2y+5x^2-2x\)

e) Ta có: \(4x\left(x^3-4x^2\right)+2x\left(2x^3-x^2+7x\right)\)

\(=4x^4-16x^3+4x^4-2x^3+14x^2\)

\(=8x^4-18x^3+14x^2\)

f) Ta có: \(25x-4\left(3x-1\right)+7x\left(5-2x^2\right)\)

\(=25x-12x+4+35x-14x^3\)

\(=-14x^3+48x+4\)

1: Trường hợp 1: x>=0

Pt trở thành x+x=2

hay x=1(nhận)

Trường hợp 2: x<0

Pt trở thành -x+x=2

=>0x=2(loại)

2: Trường hợp 1: x>=1

Pt trở thành x-1+x=2

=>2x=3

hay x=3/2(nhận)

Trường hợp 2: x<1

Pt trở thành 1-x+x=2

=>1=2(loại)

 

19 tháng 4 2017

Ta có:

P(x) = 2x4 –x - 2x3 + 1

Q(x) = 5x2 – x3 + 4x

H(x) = -2x4 + x2 + 5.

Sắp xếp các đa thức theo lũy thừa giảm dần rồi xếp các số hạng đồng dạng theo cùng cột dọc ta được:



28 tháng 4 2017

ta có:

P(x) = 2x4 –x – 2x3 + 1

Q(x) = 5x2 – x3 + 4x

H(x) = -2x4 + x2 + 5.

Sắp xếp các đa thức theo lũy thừa giảm dần rồi xếp các số hạng đồng dạng theo cùng cột dọc ta được: