\(\left(x^2+x-2\right)^2\)+(x-1)\(^4\)=0 giai pt

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

X=1 nha bạn

6 tháng 4 2017

bạn gải cả lời giải mình xem với

13 tháng 7 2016

1/ \(\left(x-1\right)\left(x^2-2x-2\right)=0\)

     \(\Rightarrow\orbr{\begin{cases}x-1=0\left(1\right)\\x^2-2x-2=0\left(2\right)\end{cases}}\)

   + Từ (1) => x = 1

   +  Từ (2) . Ta có: \(\Delta=\left(-2\right)^2-4\left(-2\right)=12\Rightarrow\sqrt{\Delta}=\sqrt{12}=2\sqrt{3}\)

       \(\Rightarrow\orbr{\begin{cases}x=\frac{2+2\sqrt{3}}{2}=1+\sqrt{3}\\x=\frac{2-2\sqrt{3}}{2}=1-\sqrt{3}\end{cases}}\)

                      Vậy \(x=\left\{1+\sqrt{3};1-\sqrt{3};1\right\}\)

2/ \(\left(x-1\right)^2\left(2x^2-x+2\right)=0\)

    \(\Rightarrow\orbr{\begin{cases}x-1=0\left(1\right)\\2x^2-x+2=0\left(2\right)\end{cases}}\)

    + Từ (1) => x = 1

    + Từ (2). Ta có: \(2x^2-x+2=2\left(x^2-\frac{1}{2}x+1\right)\)

                   \(=2\left(x^2-2.\frac{1}{4}x+\frac{1}{16}-\frac{1}{16}+1\right)\)

                    \(=2\left[\left(x-\frac{1}{4}\right)^2+\frac{15}{16}\right]=2\left(x-\frac{1}{4}\right)^2+\frac{15}{8}>0\)

                     => pt (2) vô nghiệm

                                                                      Vậy x = 1

13 tháng 7 2016

a)(x-1)(x2-2x-2)=0

=>x-1=0 hoặc x2-2x-2=0

  • Với x-1=0 =>x=1
  • Với x2-2x-2=0 =>denta=(-2)2-(-4(1.2))=12

=>x1,2=(2±căn 12)/2=1- căn 3 hoặc căn 3+1

b)(x-1)2(2x2-x+2)=0

=>(x-1)2=0 hoặc 2x2-x+2=0

  • Với (x-1)2=0  =>x=1
  • Với 2x2-x+2=0 =>denta=(-1)2-4(2*2)=-15

Với Denta<0 =>vô nghiệm

Vậy x=1

8 tháng 10 2018

mk làm 1 câu các câu còn lại tương tự nha :

a) ta có : \(pt\Leftrightarrow x^2-6x+9=-y^2-10y+33\)

\(\Leftrightarrow\left(x-3\right)^2=-y^2-10y+33\ge0\)

\(\Leftrightarrow-5-\sqrt{58}\le y\le-5+\sqrt{58}\) \(\Rightarrow x\in\left\{-12;-11;-10;...;1;2\right\}\) có y thế vào tìm x

8 tháng 10 2018

giups mik giải chi tiết đi mik bận lắm

10 tháng 10 2020

5) \(ĐK:x\ge-\frac{3}{2}\)

\(x^3+4x-\left(2x+7\right)\sqrt{2x+3}=0\)

\(\Leftrightarrow\frac{x^3+4x}{2x+7}=\sqrt{2x+3}\Leftrightarrow\frac{x^3+4x}{2x+7}-3=\sqrt{2x+3}-3\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x^2+3x+7\right)}{2x+7}=\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{x^2+3x+7}{2x+7}-\frac{2}{\sqrt{2x+3}+3}\right)=0\)

(không có nghiệm thực)

Vậy phương trình có 1 nghiệm duy nhất là 3

10 tháng 10 2020

1) \(Pt\Leftrightarrow-x^2-3x+10=3\sqrt{x^2+3x}\)( đk: \(x\le-3,x\ge0\)

Đặt \(t=\sqrt{x^2+3x},t\ge0\)

Pt trở thành: \(-t^2-3t+10=0\Leftrightarrow t=2\left(dot\ge0\right)\)

giải \(\sqrt{x^2+3x}=2\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)

27 tháng 5 2017

<=>\(\left(2x^2+2\right)^2-\left(x^2-5x-2\right)^2=0\)

<=>\(\left(2x^2+2-x^2+5x+2\right)\left(2x^2+2+x^2-5x-2\right)=0\)

<=>\(\left(x^2+5x+4\right)\left(3x^2-5x\right)=0\)

<=>\(\left(x+1\right)\left(x+4\right)x\left(3x-5\right)=0\)

<=>x+1=0 hoặc x+4=0 hoặc x=0 hoặc 3x-5=0

<=>x=-1 hoặc x=-4 hoặc x=0 hoặc x=5/3

27 tháng 5 2017

bài này dùng hằng đẳng thức a2-b2= (a-b)(a+b)

\(\left(2x^2+2-x^2+5x+2\right)\left(2x^2+2+x^2-5x-2\right)=0\)

\(\left(x^2+5x+4\right)\left(3x^2-5x\right)=0\)

  • \(x^2+5x+4=0\)<=> \(\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
  • \(3x^2-5x=o\)<=> \(\orbr{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}\) việc còn lại bạn tự làm nhé kết luận nghiệm
30 tháng 7 2019

\(\sqrt{4x}=\sqrt{5}\Rightarrow4x=5\Leftrightarrow x=1,25\)

\(\sqrt{4\left(1-x\right)^2}-6=0\Leftrightarrow4\left(1-x\right)^2=36\Leftrightarrow\left(1-x\right)^2=9\Leftrightarrow\left[{}\begin{matrix}1-x=3\\1-x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)

\(\sqrt{x^2-4x+4}=\sqrt{\left(x-2\right)^2}=\left|x-2\right|=3\Leftrightarrow\left[{}\begin{matrix}x-2=-3\\x-2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)

30 tháng 7 2019

tai sao tu\(\sqrt{4\left(1-x\right)^2}-6\) lai thanh \(4\left(1-x\right)^2\)=36

23 tháng 11 2022

a: =>(x^2+4x-5)(x^2+4x-21)=297

=>(x^2+4x)^2-26(x^2+4x)+105-297=0

=>x^2+4x=32 hoặc x^2+4x=-6(loại)

=>x^2+4x-32=0

=>(x+8)(x-4)=0

=>x=4 hoặc x=-8

b: =>(x^2-x-3)(x^2+x-4)=0

hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)

c: =>(x-1)(x+2)(x^2-6x-2)=0

hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)

29 tháng 8 2017

b )  x= 0

c ) x = xấp xỉ 7/10

29 tháng 8 2017

giải ra luôn dc k

14 tháng 7 2018

a) \(\left|3x+1\right|=\left|x+1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=x+1\\3x+1=-x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)

c) \(\sqrt{9x^2-12x+4}=\sqrt{x^2}\)

\(\Leftrightarrow\sqrt{\left(3x-2\right)^2}=\sqrt{x^2}\)

\(\Leftrightarrow\left|3x-2\right|=\left|x\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=x\\3x-2=-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)

d) \(\sqrt{x^2+4x+4}=\sqrt{4x^2-12x+9}\)

\(\Leftrightarrow\sqrt{\left(x+2\right)^2}=\sqrt{\left(2x-3\right)^2}\)

\(\Leftrightarrow\left|x+2\right|=\left|2x-3\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=2x-3\\x+2=-2x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{1}{3}\end{matrix}\right.\)

e) \(\left|x^2-1\right|+\left|x+1\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow x=-1\)

f) \(\sqrt{x^2-8x+16}+\left|x+2\right|=0\)

\(\Leftrightarrow\sqrt{\left(x-4\right)^2}+\left|x+2\right|=0\)

\(\Leftrightarrow\left|x-4\right|+\left|x+2\right|=0\)

⇒ vô nghiệm