\(\left(x^2-1\right)\left(x^2-11\right)\left(x^2-21\right)\left(x^2-31\right)=-4224\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow x^3-3x^2+3x-1-x^3+2x^2-x=5x\left(2-x\right)-11\left(x+2\right)\)

=>-x^2+2x-1=10x-5x^2-11x-22

=>-x^2+2x-1=-5x^2-x-22

=>4x^2+3x+21=0

=>PTVN

b: \(\Leftrightarrow\left(x+10\right)\left(x+4\right)+3\left(x+4\right)\left(x-2\right)=4\left(x+10\right)\left(x-2\right)\)

=>x^2+14x+40+3(x^2+2x-8)=4(x^2+8x-20)

=>x^2+14x+40+3x^2+6x-24=4x^2+32x-80

=>20x+16=32x-80

=>-12x=-96

=>x=8

c: \(\Leftrightarrow6\left(x-3\right)+7\left(x-5\right)=13x+4\)

=>6x-18+7x-35=13x+4

=>-53=4(loại)

d: =>3(2x-1)-5(x-2)=3(x+7)

=>6x-3-5x+10=3x+21

=>3x+21=x+7

=>x=-7

e: =>x^3-6x^2+12x-8-x^3-3x^2-3x-1=-9x^2+1

=>-9x^2+9x-9=-9x^2+1

=>9x=10

=>x=10/9

NV
26 tháng 2 2020

1. \(x^2\left(x+1\right)+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x+1=0\Rightarrow x=-1\)

2. \(\left(x-2\right)\left(6x+2\right)+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)\left(6x+2+x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right).7x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\7x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

NV
26 tháng 2 2020

3.

\(x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

4.

\(x^2-x-6=0\)

\(\Leftrightarrow x^2+2x-3x-6=0\)

\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

28 tháng 1 2017

a) \(\left(x+1\right)\left(2x-1\right)\left(-x+2\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}x+1=0\\2x-1=0\\-x+2=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-1\\x=\frac{1}{2}\\x=2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{-1;\frac{1}{2};2\right\}\)

b) \(\left(2x-1\right)\left(3x+2\right)\left(4x-5\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}2x-1=0\\3x+2=0\\4x-5=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=\frac{1}{2}\\x=-\frac{2}{3}\\x=\frac{5}{4}\\x=7\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{\frac{1}{2};-\frac{2}{3};\frac{5}{4};7\right\}\)

c) \(x^2-6x+11=0\)

\(\Leftrightarrow x^2-6x+9+2=0\)

\(\Leftrightarrow\left(x-3\right)^2+2=0\) (vô lí)

Vậy phương trình vô nghiệm

d) \(\left(x^2+2x+3\right)\left(x^2-25\right)\left(x+19\right)=0\)

\(\Leftrightarrow\left(x^2+2x+1+2\right)\left(x+5\right)\left(x-5\right)\left(x+19\right)=0\)

\(\Leftrightarrow\left[\left(x+1\right)^2+2\right]\left(x+5\right)\left(x-5\right)\left(x+19\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}x+5=0\\x-5=0\\x+19=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-5\\x=5\\x=-19\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{\pm5;-19\right\}\)

28 tháng 1 2017

a,b,d dễ mà bạn tự làm

c,x2-6x+11=0<=> x2-6x+9+2=0

<=>(x-3)2=-2(vô lý)

vậy pt vô nghiệm

12 tháng 2 2020

a) \(\left(3x+2\right)^2-\left(3x-2\right)^2=5x+8\)

\(\Rightarrow\left(3x+2+3x-2\right)\left(3x+2-3x+2\right)=5x+8\)

\(\Rightarrow4.6x=5x+8\Rightarrow24x=5x+8\)

\(\Rightarrow19x=8\Rightarrow x=\frac{8}{19}\)

12 tháng 2 2020

b) \(3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\)

\(\Rightarrow3\left(x^2-4x+4\right)+9x-9=3x^2+3x-9\)

\(\Rightarrow3x^2-12x+12+9x-9=3x^2+3x-9\)

\(\Rightarrow-12x+12+9x-9=3x-9\)

\(\Rightarrow-3x+3=3x-9\)

\(\Rightarrow6x=12\Rightarrow x=2\)

28 tháng 5 2017

a) (x-1)(5x+3)=(3x-8)(x-1)

= (x-1)(5x+3)-(3x-8)(x-1)=0

=(x-1)[(5x+3)-(3x-8)]=0

=(x-1)(5x+3-3x+8)=0

=(x-1)(2x+11)=0

\(\Leftrightarrow\) x-1=0 hoặc 2x+11=0

\(\Leftrightarrow\) x=1 hoặc x=\(\dfrac{-11}{2}\)

Vậy S={1;\(\dfrac{-11}{2}\)}

b) 3x(25x+15)-35(5x+3)=0

=3x.5(5x+3)-35(5x+3)=0

=15x(5x+3)-35(5x+3)=0

=(5x+3)(15x-35)=0

\(\Leftrightarrow\) 5x+3=0 hoặc 15x-35=0

\(\Leftrightarrow\) x=\(\dfrac{-3}{5}\) hoặc x=\(\dfrac{7}{3}\)

Vậy S={\(\dfrac{-3}{5};\dfrac{7}{3}\)}

c) (2-3x)(x+11)=(3x-2)(2-5x)

=(2-3x)(x+11)-(3x-2)(2-5x)=0

=(3x-2)[(x+11)-(2-5x)]=0

=(3x-2)(x+11-2+5x)=0

=(3x-2)(6x+9)=0

\(\Leftrightarrow\) 3x-2=0 hoặc 6x+9=0

\(\Leftrightarrow\) x=\(\dfrac{2}{3}\) hoặc x=\(\dfrac{-3}{2}\)

Vậy S={\(\dfrac{2}{3};\dfrac{-3}{2}\)}

d) (2x2+1)(4x-3)=(2x2+1)(x-12)

=(2x2+1)(4x-3)-(2x2+1)(x-12)=0

=(2x2+1)[(4x-3)-(x-12)=0

=(2x2+1)(4x-3-x+12)=0

=(2x2+1)(3x+9)=0

\(\Leftrightarrow\)2x2+1=0 hoặc 3x+9=0

\(\Leftrightarrow\)x=\(\dfrac{1}{2}\)hoặc x=\(\dfrac{-1}{2}\) hoặc x=-3

Vậy S={\(\dfrac{1}{2};\dfrac{-1}{2};-3\)}

e) (2x-1)2+(2-x)(2x-1)=0

=(2x-1)[(2x-1)+(2-x)=0

=(2x-1)(2x-1+2-x)=0

=(2x-1)(x+1)=0

\(\Leftrightarrow\) 2x-1=0 hoặc x+1=0

\(\Leftrightarrow\) x=\(\dfrac{-1}{2}\) hoặc x=-1

Vậy S={\(\dfrac{-1}{2}\);-1}

f)(x+2)(3-4x)=x2+4x+4

=(x+2)(3-4x)=(x+2)2

=(x+2)(3-4x)-(x+2)2=0

=(x+2)[(3-4x)-(x+2)]=0

=(x+2)(3-4x-x-2)=0

=(x+2)(-5x+1)=0

\(\Leftrightarrow\) x+2=0 hoặc -5x+1=0

\(\Leftrightarrow\) x=-2 hoặc x=\(\dfrac{1}{5}\)

Vậy S={-2;\(\dfrac{1}{5}\)}

1, \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)

\(\Leftrightarrow-4x^2+28x+4x^3-20x=28x^2-13\)

\(\Leftrightarrow-32x^2+8x+4x^3-13=0\)( vô nghiệm )

2, \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)

\(\Leftrightarrow12x^3-7x^2-10x-7x^2-35x=-2x^2+11x-12+12x^3+2x^2\)

\(\Leftrightarrow12x^3-14x^2-45x=11x-12+12x^3\)

\(\Leftrightarrow-14x^2-56x-12=0\)( vô nghiệm )

20 tháng 8 2020

Mình làm riêng ra nhá , chứ nhiều quá nên thông cảm cho mình :))

1. \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)

=> \(-4x^2+28x+4x^3-20x=28x^2-13\)

=> \(-4x^2+4x^3+\left(28x-20x\right)=28x^2-13\)

=> \(-4x^2+4x^3+8x-28x^2+13=0\)

=> \(\left(-4x^2-28x^2\right)+4x^3+8x+13=0\)

=> \(-32x^2+4x^3+8x+13=0\)

=> vô nghiệm

2. \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)

=> \(4x^2\left(3x+2\right)-5x\left(3x+2\right)-7x\left(x+5\right)=-4\left(-2x+3\right)+x\left(-2x+3\right)+12x^3+2x^2\)

=> \(12x^3+8x^2-15x^2-10x-7x^2-35x=8x-12-2x^2+3x+12x^3+2x^2\)

=> \(12x^3+8x^2-15x^2-10x-7x^2-35x-8x+12+2x^2-3x-12x^3-2x^2=0\)

=> \(\left(12x^3-12x^3\right)+\left(8x^2-15x^2-7x^2+2x^2-2x^2\right)+\left(-10x-35x-8x-3x\right)+12=0\)

=> \(-14x^2-56x+12=0\)

=> .... tự tìm

Câu c dấu bằng chỗ nào ?

14 tháng 7 2017

1. \(\left(2x-1\right)^3+\left(x+2\right)^3=\left(3x+1\right)^3\)

\(\Rightarrow8x^3-12x^2+6x-1+x^3+6x^2+12x+8=27x^3+27x^2+9x+1\)

\(\Rightarrow-18x^3-33x^2+9x+6=0\)\(\Rightarrow\left(x+2\right)\left(-18x^2+3x+3\right)=0\)

\(\Rightarrow\left(x+2\right)\left(2x-1\right)\left(-9x-3\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2};x=-\frac{1}{3}\end{cases}}\)

Vậy \(x=-2;x=\frac{1}{2};x=-\frac{1}{3}\)

2. \(\frac{x-1988}{15}+\frac{x-1969}{17}+\frac{x-1946}{19}+\frac{x-1919}{21}=10\)

\(\Rightarrow\left(\frac{x-1988}{15}-1\right)+\left(\frac{x-1969}{17}-2\right)+\left(\frac{x-1946}{19}-3\right)+\left(\frac{x-1919}{21}-4\right)=0\)

\(\Rightarrow\frac{x-2003}{15}+\frac{x-2003}{17}+\frac{x-2003}{19}+\frac{x-2003}{21}=0\)

\(\Rightarrow x-2003=0\)do \(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\ne0\)

Vậy \(x=2003\)

3. Đặt \(\hept{\begin{cases}2009-x=a\\x-2010=b\end{cases}}\)

\(\Rightarrow\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\Rightarrow49a^2+49ab+49b^2=19a^2-19ab+19b^2\)

\(\Rightarrow30a^2+68ab+30b^2=0\Rightarrow\left(5a+3b\right)\left(3a+5b\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5a=-3b\\3a=-5b\end{cases}}\)

Với \(5a=-3b\Rightarrow5\left(2009-x\right)=-3\left(x-2010\right)\)

\(\Rightarrow-2x=-4015\Rightarrow x=\frac{4015}{2}\)

Với \(3a=-5b\Rightarrow3\left(2009-x\right)=-5\left(x-2010\right)\)

\(\Rightarrow2x=4023\Rightarrow x=\frac{4023}{2}\)

Vậy \(x=\frac{4023}{2}\)hoặc \(x=\frac{4015}{2}\)

2 tháng 1 2018

a)(x - 4)2 - 25= 0

<--> ( x - 4)2 - 52 = 0

<--> ( x - 4 - 5 )( x - 4 + 5 ) = 0

<--> ( x - 4 - 5 ) = 0 <--> x - 9 = 0 <--> x = 9

hoặc

<--> ( x - 4 + 5 ) = 0 <--> x + 1 = 0 <--> x = -1

b)bài này tương tự bài a

2 tháng 1 2018

\(a,\left(x-4\right)^2-25=0\)

\(\Rightarrow\left(x-4-5\right)\left(x-4+5\right)=0\)

\(\Rightarrow\left(x-9\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-9=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=9\\x=-1\end{matrix}\right.\)

\(b,\left(x-3\right)^2-\left(x+1\right)^2=0\)

\(\Rightarrow\left(x-3-x-1\right)\left(x-3+x+1\right)=0\)

\(\Rightarrow-4\left(2x-2\right)=0\)

\(\Rightarrow2\left(x-1\right)=0\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

\(c,\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)

\(\Rightarrow2x+3=x-1\)

\(\Rightarrow2x-x=-1-3\)

\(\Rightarrow x=-4\)

\(d,\left(3x-7\right)^2-4\left(x+1\right)^2=0\)

\(\Rightarrow\left(3x-7\right)-\left[2\left(x+1\right)\right]^2=0\)

\(\Rightarrow\left(3x-7\right)^2-\left(2x+2\right)^2=0\)

\(\Rightarrow\left(3x-7-2x-2\right)\left(3x-7+2x+2\right)=0\)

\(\Rightarrow\left(x-9\right)\left(5x-5\right)=0\)

\(\Rightarrow5\left(x-9\right)\left(x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-9=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=9\\x=1\end{matrix}\right.\)