Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=x^3-3x^2+3x+3=\left(x-1\right)^3+2\)
Thay vào là OK!!
\(\frac{1}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)tương tự những cái kia rồi triệt tiêu còn phân thức đầu vs cuối
\(A=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+...+\dfrac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(\Rightarrow A=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+2013}-\dfrac{1}{x+2014}\)
\(\Rightarrow A=\dfrac{1}{x}-\dfrac{1}{x+2014}\)
\(\Rightarrow A=\dfrac{2014}{x\left(x+2014\right)}\)
\(A=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+....+\dfrac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(=\dfrac{1}{x}+\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+...+\dfrac{1}{x+2013}-\dfrac{1}{x+2014}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+2014}-\dfrac{x+2014}{x\left(x+2014\right)}-\dfrac{x}{x\left(x+2014\right)}\)
\(=\dfrac{x+2014-x}{x\left(x+2014\right)}\)
\(=\dfrac{2014}{x\left(x+2014\right)}\)
\(\frac{x}{2016}+\frac{x-1}{2015}+\frac{x-2}{2014}+\frac{x-3}{2013}=4\)
\(\Leftrightarrow\left(\frac{x}{2016}-1\right)+\left(\frac{x-1}{2015}-1\right)+\left(\frac{x-2}{2014}-1\right)+\left(\frac{x-3}{2013}-1\right)=0\)
\(\Leftrightarrow\frac{x-2016}{2016}+\frac{x-2016}{2015}+\frac{x-2016}{2014}+\frac{x-2016}{2013}=0\)
\(\Leftrightarrow\left(x-2016\right)\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+\frac{1}{2013}\right)=0\)
Dễ thấy cái vế sau > 0 nên x=2016
Câu b có cách nào hay hơn bằng cách phá ko ta,hóng quá:)
\(125x^3=\left(2x+1\right)^3+\left(3x-1\right)^3\)
\(\Leftrightarrow8x^3+12x^2+6x+1+27x^3-27x^2+9x-1=125x^3\)
\(\Leftrightarrow35x^3-15x^2+15x=125x^3\)
\(\Leftrightarrow90x^3+15x^2-15x=0\)
\(\Leftrightarrow x\left(90x^2+15x-15\right)=0\)
\(\Leftrightarrow x\left(3x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow x=0;x=-\frac{1}{2};x=\frac{1}{3}\)
a. \(\frac{x}{2016}+\frac{x-1}{2015}+\frac{x-2}{2014}+\frac{x-3}{2013}=4\)
\(\rightarrow\left(\frac{x}{2016}-1\right)+\left(\frac{x-1}{2015}-1\right)+\left(\frac{x-2}{2014}-1\right)+\left(\frac{x-3}{2013}-1\right)=0\)
\(\rightarrow\frac{x-2016}{2016}+\frac{x-2016}{2015}+\frac{x-2016}{2014}+\frac{x-2016}{2013}=0\)
\(\rightarrow\left(x-2016\right).\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{1014}+\frac{1}{2013}\right)=0\)
Vì \(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+\frac{1}{2013}\ne0\)
\(\rightarrow x-2016=0\)
\(\rightarrow x=2016\)
Vậy ...
Bài 17)
(x - 2)^4 + (x - 6)^4 = 82
Đặt t = x + 3
=> x + 2 = t - 1; x + 4 = t + 1.
ta có pt: (t - 1)^4 + (t + 1)^4 = 82
<=>[(t -1)²]² + [(t + 1)²]² = 82
<=> (t² - 2t + 1)² + (t² + 2t + 1)² = 82
<=> (t²+1)² - 4t(t²+1) + 4t² + (t²+1)² + 4t(t²+1) + 4t² = 82
<=> (t² + 1)² + 4t² = 41
<=> t^4 + 6t² + 1 = 41
<=> (t²)² + 6t² - 40 = 0
<=> t² = -10 (loại) hoặc t² = 4
<=> t = 2 hoặc t = -2
với t = -2 => x = -5
với t = 2 => x = -1
vậy pt có hai nghiệm là : x = -1 hoặc x = -5
Bài 18: Phương trình đã cho được viết thành: $${({x^2} + 6x + 10)^2} + (x + 3)\left[ {3\left( {{x^2} + 6x + 10} \right) + 2\left( {x + 3} \right)} \right] = 0$$
Đặt $u = {x^2} + 6x + 10 > 0,v = x + 3$, suy ra:
$${u^2} + v\left( {3u + 2v} \right) = 0 \Leftrightarrow \left( {u + v} \right)\left( {u + 2v} \right) = 0 \Leftrightarrow \left[ \begin{gathered}
u + v = 0 \\
u + 2v = 0 \\
\end{gathered} \right.$$
$$ \Leftrightarrow \left[ \begin{gathered}
{x^2} + 6x + 10 + x + 3 = 0 \\
{x^2} + 6x + 10 + 2\left( {x + 3} \right) = 0 \\
\end{gathered} \right. \Leftrightarrow \left[ \begin{gathered}
{x^2} + 7x + 13 = 0 \\
{x^2} + 8x + 16 = 0 \\
\end{gathered} \right. \Leftrightarrow x = - 4$$
Đặt \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}=k\)
\(\Rightarrow\hept{\begin{cases}x=2013k\\y=2014k\\z=2015k\end{cases}}\)
Ta có :
4(x - y)(y - z) = 4(2013k - 2014k)(2014k - 2015k)
=4.(-k).(-k) = 4k2 (1)
(z - x)2 = (2015k - 2013k)2 = (2k)2 = 4k2 (2)
Từ 1 và 2
=> 4(x - y)(y - z) = (z - x)2
\(P=\frac{x}{\sqrt{x}-3}\Leftrightarrow P-12=\frac{x}{\sqrt{x}-13}-12\)
\(\Leftrightarrow P-12=\frac{x-12\sqrt{x}+36}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-6\right)^2}{\sqrt{x}-3}\)
Mà \(\left(\sqrt{x}-6\right)^2\ge0va\sqrt{x}-3>0\left(x>9\right)\)
\(\Rightarrow\frac{\left(\sqrt{x}-6\right)^2}{\sqrt{x}-3}\ge0\)
Dấu = xảy ra <=> \(\left(\sqrt{x}-6\right)^2=0\Leftrightarrow\sqrt{x}-6=0\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=36\)
Lúc đó \(P-12=0\Rightarrow P=12\)
Vậy GTNN của \(P=12\Leftrightarrow x=36\)
Hìiiiiiiiiiiiiiiiiiiiiiiiiiiiii