\(\left(x-3\right)\left(x-1\right)\left(x+5\right)\left(x+7\right)=297\)

Giải hộ mk...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2016

giải bằng casio đc x = 4

30 tháng 6 2016

(x - 3)(x + 7)(x - 1)(x + 5) = 297

=> (x2 + 4x - 21)(x2 + 4x - 5) = 297

Đặt a = x2 + 4x - 5 , ta được pt :

(a - 16)a = 297 => a- 16a - 297 = 0 => a = 27 hoặc a = -11

+ Với a = 27 => x2 + 4x - 5 = 27 => x2 + 4x - 32 = 0 => x = -8 hoặc x = 4

+ Với a = -11 => x2 + 4x - 5 = -11 => x2 + 4x + 6 = 0 , mà x2 + 4x + 6 > 0 => vô nghiệm

                                                 Vậy x = -8 , x = 4

23 tháng 11 2022

a: =>(x^2+4x-5)(x^2+4x-21)=297

=>(x^2+4x)^2-26(x^2+4x)+105-297=0

=>x^2+4x=32 hoặc x^2+4x=-6(loại)

=>x^2+4x-32=0

=>(x+8)(x-4)=0

=>x=4 hoặc x=-8

b: =>(x^2-x-3)(x^2+x-4)=0

hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)

c: =>(x-1)(x+2)(x^2-6x-2)=0

hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)

9 tháng 9 2017

ẩn phụ sama nốt

9 tháng 9 2017

Cho thanh niên nào có cùng ý tưởng cao cả

x1=-6,854452804

x2=3,854452804

=> x1+x2=-3;x1x2=-26,42016483

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

8 tháng 7 2018

cả 2 pt đều giải theo kiểu cái đầu nhóm với cái cuối, 2 cái ở giữa nhóm với nhau. sau đó giải theo cách đặt ẩn phụ

21 tháng 2 2020

1) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)

\(\Leftrightarrow\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24=0\)

\(\Leftrightarrow\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)-24=0\)

\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)

Đặt \(x^2+7x=a\), nên ta có :

\(\left(a+10\right)\left(a+12\right)-24=0\)

\(\Leftrightarrow\left(x+11-1\right)\left(x+11+1\right)-24=0\)

\(\Leftrightarrow\left[\left(x+11\right)^2-1\right]-24=0\)

\(\Leftrightarrow\left(x+11\right)^2-25=0\)

\(\Leftrightarrow\left(x+11-5\right)\left(x+11+5\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x+16\right)=0\Leftrightarrow\orbr{\begin{cases}x=-6\\x=-16\end{cases}}\)

Câu a :

\(x-5\sqrt{x}-14=0\)

\(\Leftrightarrow\left(\sqrt{x}+2\right)\left(\sqrt{x}-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+2=0\\\sqrt{x}-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\x=49\end{matrix}\right.\)

Vậy \(S=\left\{49\right\}\)

Câu b :

\(\left(x^2+x+1\right)\left(x^2+x+2\right)=2\)

Đặt \(x^2+x+1=t\)

\(\Leftrightarrow t\left(t+1\right)=2\)

\(\Leftrightarrow t^2+t-2=0\)

\(\Leftrightarrow\left(t-1\right)\left(t+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t-1=0\\t+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-2\end{matrix}\right.\)

Với \(t=1\) thì :

\(x^2+x+1=1\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Với \(t=-2\) thì :

\(x^2+x+1=-2\)

\(\Leftrightarrow x^2+x+3=0\) ( pt vô nghiệm )

Vậy \(S=\left\{-1;0\right\}\)

\(A=\left(x-1\right)\left(x-8\right)\left(x-4\right)\left(x-5\right)+2002\)

\(\Leftrightarrow A=\left(x^2-9x+8\right)\left(x^2-9x+20\right)+2002\)

Đặt \(x^2-9x+14=y\)

\(\Rightarrow A=\left(y-6\right)\left(y+6\right)+2002\)

\(\Leftrightarrow A=y^2-36+2002\)

\(\Leftrightarrow A=y^2+1966\ge1966\)

Dấu "=" xảy ra khi

 \(x^2-9x+14=0\)

\(\Leftrightarrow x=2,7\)