Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a-b⋮7\Rightarrow a⋮6,b⋮7\)
\(\Rightarrow4a⋮7;3b⋮7\)
\(\Rightarrow4a+3b⋮7\) (đpcm)
\(\hept{\begin{cases}a-3⋮7\Rightarrow a-3+28⋮7\Rightarrow a+25⋮7\\a-5⋮10\Rightarrow a-5+30⋮10\Rightarrow a+25⋮10\end{cases}}\)
\(\Rightarrow a+25\in BC\left(7;10\right)\)
Mà (7,10)=1
\(\Rightarrow a+25\in B\left(70\right)\Rightarrow a+25\in\left\{70;140;...\right\}\)
Mà\(a\le100\Rightarrow a+25\le125\)
\(\Rightarrow a+25=70\Rightarrow a=45\)
Vậy a=45
Đặt \(x=\frac{y}{2}=\frac{z}{3}=k\left(k\in Q\right)\)\(\Rightarrow x=k;y=2k;z=3k\)
Thế (1) vào biểu thức trên
\(\Rightarrow2\left(x^2+y^2\right)-z^2=9\)
\(\Leftrightarrow2\left[\left(k\right)^2+\left(2k\right)^2\right]-\left(3k\right)^2=9\)
\(\Rightarrow2\left(k^2+4k^2\right)-9k^2=9\)
\(\Rightarrow2k^2+8k^2-9k^2=9\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\hept{\begin{cases}3\\-3\end{cases}}\)
Với k = 3
\(\Rightarrow x=3;y=3.2=6;z=3.3=9\)
Với k = -3
\(\Rightarrow x=-3;y=-3.2=-6;z=-3.3=-9\)
ta có \(10^n-1=9999...99\)(\(n-1\)chữ sô \(9\))
\(\Rightarrow10^n-1⋮9\)
\(\Rightarrow S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+..+\frac{1}{n^2}-\frac{1}{n+1^2}\)
\(\Rightarrow S=1-\frac{1}{n+1}\)
\(\Rightarrow S+\frac{n}{n+1}\)