Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d, \(=>\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4.\)
=> \(2x+7=4\)
=> 2x= -3
=> x=-3/2 . Vậy x=-3/2
e, => \(\frac{7^x.7^2+7^x.7+7^x}{57}=\frac{5^{2x}+5^{2x}.5+5^{2x}.5^2}{131}.\)
=> \(\frac{7^x\left(7^2+7+1\right)}{57}=\frac{5^{2x}\left(1+5+5^2\right)}{131}\)
= > \(\frac{7^x.57}{57}=\frac{5^{2x}.131}{131}\)
=> \(7^x=5^{2x}\)
Đến đoạn này là mik nghĩ không ra nhé
Cô làm tiếp giúp Linh Đan:
\(7^x=5^{2x}\Rightarrow7^x=25^x\Rightarrow\frac{7^x}{25^x}=1\Rightarrow\left(\frac{7}{25}\right)^x=1\Rightarrow x=0\)
\(\left(\frac{1}{3}-1,35x\right)^4=\frac{625}{256}\)
\(\left(\frac{1}{3}-1,35x\right)^4=\left(\frac{5}{4}\right)^4\)
\(\Rightarrow\frac{1}{3}-1,35x=\frac{5}{4}\)
\(1,35x=\frac{1}{3}-\frac{5}{4}\)
\(1,35x=\frac{-11}{12}\)
\(x=\frac{-11}{12}:1,35\)
\(x=\frac{-55}{81}\)
\(\left(\frac{1}{3}-1,35x\right)^4=\frac{625}{256}\)
\(\left(\frac{1}{3}-\frac{27}{20}\cdot x\right)^4=\frac{625}{256}\)
\(\left(\frac{1}{3}-\frac{27}{20}\cdot x\right)^4=\left(\frac{5}{4}\right)^4\)
\(\Rightarrow\left(\frac{1}{3}-\frac{27}{20}\cdot x\right)=\left(\frac{5}{4}\right)^4\)vì \(\left(\frac{5}{4}\right)^4=\frac{625}{256}\)
còn lại bạn tự tính nhé
a, (x-1) . 0,5 = 7,5 : (x-1)
=> = ( x - 1 ) 0,5 = \(\frac{x-1}{2}\)
\(=\frac{7,5}{x-1}=\frac{15}{2\left(x-1\right)}\)
=> x = - 1 \(\sqrt{15}\)
x = \(\sqrt{15+1}\)
đề sao sao ý
a) \(\left(x-4\right)^2=\left(x-4\right)^4\)
\(\Rightarrow\left(x-4\right)^2-\left(x-4^4\right)=0\)
\(\Rightarrow\left(x-4\right)^2.\left[1-\left(x-4\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-4\right)^2=0\\1-\left(x-4\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\\left(x-4\right)^2=1^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-4=1\\x-4=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=5\\x=3\end{matrix}\right.\)
\(1)A=\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{4}{11}}\)
\(=\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}\)
\(=\frac{2}{4}=\frac{1}{2}\)
\(2)B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)
\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}.\frac{4.4}{4.5}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}\)
\(=\frac{1.2.3.4}{2.3.4.5}=\frac{1}{5}\)
\(3)C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)
\(=\frac{2.2.3.3.4.4.5.5}{1.3.2.4.3.5.4.6}\)
\(=\frac{2.5}{1.6}=\frac{2.5}{1.3.2}=\frac{5}{3}\)
\(4)D=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{1}{5}-\frac{1}{6}-\frac{1}{30}\right)\)
\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{6}{30}-\frac{5}{30}-\frac{1}{30}\right)\)
\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right).0=0\)
\(5)M=8\frac{2}{7}-\left(3\frac{4}{9}+3\frac{9}{7}\right)\) \(N=\left(10\frac{2}{9}+2\frac{3}{5}\right)-6\frac{2}{9}\)
\(=\frac{58}{7}-\left(\frac{31}{9}+\frac{30}{7}\right)\) \(=\left(\frac{92}{9}+\frac{13}{5}\right)-\frac{56}{9}\)
\(=\frac{58}{7}-\left(\frac{217}{63}+\frac{270}{63}\right)\) \(=\left(\frac{460}{45}+\frac{117}{45}\right)-\frac{280}{45}\)
\(=\frac{58}{7}-\frac{487}{63}\) \(=\frac{577}{45}-\frac{280}{45}\)
\(=\frac{522}{63}-\frac{487}{63}=\frac{5}{9}\) \(=\frac{33}{5}\)
\(P=M-N\)
\(\Rightarrow P=\frac{5}{9}-\frac{33}{5}\)
\(\Rightarrow P=\frac{25}{45}-\frac{297}{45}\)
\(\Rightarrow P=\frac{-272}{45}\)
Vậy P = \(\frac{-272}{45}\)
\(6)E=10101\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)
\(=\frac{5}{11}+\frac{5}{22}-\left(10101.\frac{4}{111111}\right)\)
\(=\frac{10}{22}+\frac{5}{22}-\frac{4}{11}\)
\(=\frac{15}{22}-\frac{8}{22}=\frac{7}{22}\)
\(7)F=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{64}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
\(=\frac{1\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}{2\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}.\frac{3\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{256}+\frac{1}{64}\right)}{1\left(1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}\right)}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{16}{64}-\frac{4}{64}+\frac{1}{64}-\frac{1}{256}\right)}{1\left(\frac{64}{64}-\frac{16}{64}+\frac{4}{64}-\frac{1}{64}\right)}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{13}{64}-\frac{1}{256}\right)}{1.\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{52}{256}-\frac{1}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{51}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{\frac{153}{256}}{\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{153}{256}:\frac{51}{64}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3}{4}+\frac{5}{8}\)
\(=\frac{3}{8}+\frac{5}{8}=1\)
Xin lỗi tớ đã làm hết buổi tối mà chỉ có 7 bài mong bạn thông cảm cho mình nhé !
a) \(\left(\frac{-3}{4}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)
= \(\left(-\frac{3}{4}+\frac{2}{5}+\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)
= \(0:\frac{3}{7}\)
= \(0\)
b) \(\frac{2}{8}:\left(\frac{2}{9}-\frac{1}{18}\right)+\frac{7}{8}:\left(\frac{1}{36}-\frac{5}{12}\right)\)
= \(\frac{1}{4}:\frac{1}{6}+\frac{7}{8}:\frac{-7}{18}\)
=\(\frac{1}{4}.6+\frac{7}{8}.\frac{-18}{7}\)
= \(\frac{3}{2}-\frac{3}{4}\)
= \(\frac{3}{4}\)
\(\left(\frac{4}{5}\right)\cdot2x=\frac{625}{256}-7\)
\(\left(\frac{4}{5}\right)\cdot2x=-\frac{1167}{256}\)
\(\frac{4}{5}\cdot x=-\frac{1167}{256}\div2\)
\(\frac{4}{5}\cdot x=-\frac{1167}{512}\)
\(x=-\frac{1167}{512}\div\frac{4}{5}\)
\(x=-2,849121094\)
\(\frac{4}{5}\times2x=\frac{625}{256}-7=-\frac{1167}{256}\)
\(\Rightarrow2x=\left(-\frac{1167}{256}\right):\frac{4}{5}=-\frac{5835}{1024}\)
\(\Rightarrow x=\left(-\frac{5835}{1024}\right):2=-2,849121094\)