Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(12,5.\left(-\dfrac{5}{7}\right)+1,5.\left(-\dfrac{5}{7}\right)\)
\(=\left(-\dfrac{5}{7}\right).\left(12,5+1,5\right)\)
\(=-10\)
b,\(\left(-\dfrac{2}{5}-\dfrac{3}{7}\right):\dfrac{4}{5}+\left(-\dfrac{1}{5}+\dfrac{3}{7}\right):\dfrac{4}{5}\)
\(=\left(-\dfrac{2}{5}-\dfrac{3}{7}-\dfrac{1}{5}+\dfrac{3}{7}\right):\dfrac{4}{5}\)
\(=-\dfrac{3}{5}:\dfrac{4}{5}\)
\(=-\dfrac{3}{4}\)
c,\(12.\left(-\dfrac{2}{3}\right)^2+\dfrac{4}{3}\)
\(=12.\dfrac{4}{9}+\dfrac{4}{3}\)
\(=\dfrac{16}{3}+\dfrac{4}{3}\)
\(=\dfrac{20}{3}\)
d,\(1:\left(\dfrac{2}{3}-\dfrac{3}{4}\right)^2\)
\(=\dfrac{1}{1}:\dfrac{1}{144}\)
\(=144\)
e,\(15.\left(-\dfrac{2}{3}\right)^2-\dfrac{7}{3}\)
\(=15.\dfrac{4}{9}-\dfrac{7}{3}\)
\(=\dfrac{20}{3}-\dfrac{7}{3}\)
\(=\dfrac{13}{3}\)
a) = ( 12,5 +1,5 ). \(\left(-\dfrac{5}{7}\right)\)
= 14 . \(\left(-\dfrac{5}{7}\right)\)
= -10
b) = (\(-\dfrac{2}{5}+-\dfrac{1}{5}\)) + \(\left(\dfrac{3}{7}-\dfrac{3}{7}\right)\): \(\dfrac{4}{5}\)
= \(\left(-\dfrac{3}{5}+0\right)\): \(\dfrac{4}{5}\)
= \(\dfrac{3}{4}\)
c) = \(\left(12.-\dfrac{2}{9}\right)\) + \(\dfrac{4}{3}\)
= \(\dfrac{8}{3}\) + \(\dfrac{4}{3}\)
= \(-\dfrac{4}{3}\)
d) = 1: \(\dfrac{23}{48}\)
=\(\dfrac{48}{23}\)
e) =\(\left(15.-\dfrac{2}{9}\right)-\dfrac{7}{3}\)
= \(\left(-\dfrac{10}{3}\right)-\dfrac{7}{3}\)
=\(-\dfrac{17}{3}\)
f) = 10 485.76
a) \(x+\dfrac{3}{10}=\dfrac{-2}{5}\)
\(x=\dfrac{-2}{5}-\dfrac{3}{10}\)
\(x=\dfrac{-7}{10}\)
b) \(x+\dfrac{5}{6}=\dfrac{2}{5}-\left(-\dfrac{2}{3}\right)\)
\(x+\dfrac{5}{6}=\dfrac{2}{5}+\dfrac{2}{3}\)
\(x+\dfrac{5}{6}=\dfrac{16}{15}\)
\(x=\dfrac{16}{15}-\dfrac{5}{6}\)
\(x=\dfrac{7}{30}\)
c) \(1\dfrac{2}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)
\(\dfrac{7}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)
\(\dfrac{7}{5}x=-\dfrac{4}{5}-\dfrac{3}{7}\)
\(\dfrac{7}{5}x=\dfrac{-43}{35}\)
\(\Rightarrow x=\dfrac{-43}{49}\)
d) \(\left[x+\dfrac{3}{4}\right]-\dfrac{1}{3}=0\)
\(\left[x+\dfrac{3}{4}\right]=0+\dfrac{1}{3}\)
\(\left[x+\dfrac{3}{4}\right]=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}-\dfrac{3}{4}\)
\(x=\dfrac{-5}{12}\)
e) \(\left[x+\dfrac{4}{5}\right]-\left(-3,75\right)=-\left(-2,15\right)\)
\(\left[x+\dfrac{4}{5}\right]+3,75=2,15\)
\(x+\dfrac{4}{5}=2,15-3,75\)
\(x+\dfrac{4}{5}=-\dfrac{8}{5}\)
\(x=\dfrac{-8}{5}-\dfrac{4}{5}\)
\(x=\dfrac{-12}{5}\)
f) \(\left(x-2\right)^2=1\)
\(\Rightarrow x=1\)
Sức chịu đựng có giới hạn -.-
- Mình tiếp tục cho Nguyễn Phương Trâm nhé.
g, \(\left(2x-1\right)^3=-27\)
\(\Rightarrow\left(2x-1\right)^3=\left(-3\right)^3\)
\(\Rightarrow2x-1=-3\)
\(\Rightarrow2x=-2\)
=> \(x=-1\)
- Vậy x = -1
h,\(\dfrac{x-1}{-15}=-\dfrac{60}{x-1}\)
\(\Rightarrow\left(x-1\right)^2=-60.\left(-15\right)\)
\(\Rightarrow\left(x-1\right)^2=900 \)
\(\Rightarrow\left(x-1\right)^2=30^2\Rightarrow x-1=30\)
=> x = 31
i,\(x:\left(\dfrac{-1}{2}\right)^3=\dfrac{-1}{2}\)
=> \(x:\left(-\dfrac{1}{8}\right)=-\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{16}\)
- Vậy x=\(\dfrac{1}{16}\)
j, \(\left(\dfrac{3}{4}\right)^5.x=\left(\dfrac{3}{4}\right)^7\)
\(\Rightarrow \left(\dfrac{3}{4}\right).x=\left(\dfrac{3}{4}\right)^2\)
\(\Rightarrow x=\left(\dfrac{3}{4}\right)^2:\dfrac{3}{4}\)
\(\Rightarrow x=\dfrac{3}{4}\)
- Vạy x = \(\dfrac{3}{4}\)
k, \(8^x:2^x=4\Rightarrow\left(8:2\right)^x=4\)
=>\(4^x=4\)
=> x = 1
- Vậy x = 1
câu 1 \(A=\dfrac{3^2}{5^2}.5^2-\dfrac{9^3}{4^3}:\dfrac{3^3}{4^3}+\dfrac{1}{2}\)
\(A=\dfrac{3^2}{5^2}.5^2-\dfrac{\left(3^2\right)^3}{4^3}.\dfrac{4^3}{3^3}+\dfrac{1}{2}\)
\(A=\dfrac{3^2}{5^2}.5^2-\dfrac{3^6}{4^3}.\dfrac{4^3}{3^3}+\dfrac{1}{2}=3^2-3^3+\dfrac{1}{2}=-18+\dfrac{1}{2}=-\dfrac{35}{2}\)
\(B=\left[\dfrac{4}{11}+\dfrac{7}{22}.2\right]^{2010}-\left(\dfrac{1}{2^2}.\dfrac{4^4}{8^2}\right)^{2009}\)
\(B=\left[\dfrac{4}{11}+\dfrac{7}{11}\right]^{2010}-\left(\dfrac{1}{2^2}.\dfrac{\left(2^2\right)^4}{\left(2^3\right)^2}\right)^{2009}\)
\(B=1^{2010}-\left(\dfrac{1}{2^2}.\dfrac{2^8}{2^6}\right)^{2009}\)
\(B=1^{2010}-\left(\dfrac{2^8}{2^8}\right)^{2009}\)
\(B=1^{2010}-1^{2009}=1-1=0\)
câu 2
a) \(2x-\dfrac{5}{4}=\dfrac{20}{15}\)
\(\Leftrightarrow2x=\dfrac{4}{3}+\dfrac{5}{4}\)
\(\Leftrightarrow2x=\dfrac{31}{12}\)
\(\Leftrightarrow x=\dfrac{31}{24}\)
b) \(\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{3}=-\dfrac{1}{2}\)
\(\Leftrightarrow x=-\dfrac{1}{2}-\dfrac{1}{3}\)
\(\Leftrightarrow x=-\dfrac{5}{6}\)
1.Tính
a.\(\dfrac{7}{23}\left[(-\dfrac{8}{6})-\dfrac{45}{18}\right]=\dfrac{7}{23}.-\dfrac{12}{6}=-\dfrac{7}{6}\)
b.\(\dfrac{1}{5}\div\dfrac{1}{10}-\dfrac{1}{3}(\dfrac{6}{5}-\dfrac{9}{4})=2-(-\dfrac{7}{20})=\dfrac{47}{20}\)
c.\(\dfrac{3}{5}.(-\dfrac{8}{3})-\dfrac{3}{5}\div(-6)=-\dfrac{3}{2}\)
d.\(\dfrac{1}{2}.(\dfrac{4}{3}+\dfrac{2}{5})-\dfrac{3}{4}.(\dfrac{8}{9}+\dfrac{16}{3})=-\dfrac{19}{5}\)
e.\(\dfrac{6}{7}\div(\dfrac{3}{26}-\dfrac{3}{13})+\dfrac{6}{7}.(\dfrac{1}{10}-\dfrac{8}{5})=-\dfrac{61}{7}\)
Bài 2
a.\(1^2_5x+\dfrac{3}{7}=\dfrac{4}{5}\)
\(x=\dfrac{13}{49}\)
b.\(\left|x-1,5\right|=2\)
Xảy ra 2 trường hợp
TH1
\(x-1,5=2\)
\(x=3,5\)
TH2
\(x-1,5=-2\)
\(x=-0,5\)
Vậy \(x=3,5\) hoặc \(x=-0,5\) .
Ngại làm quá trời ơi,lần sau bn tách ra nhá làm vậy mỏi tay quá.
a: \(=\left|\dfrac{3}{2}-\dfrac{7}{3}\right|^2+\dfrac{1}{4}=\dfrac{17}{18}\)
b: \(=\left|1-2-\dfrac{1}{3}\right|+\dfrac{5}{6}=1+\dfrac{1}{3}+\dfrac{5}{6}=\dfrac{13}{6}\)
c: \(=\left|\dfrac{3}{2}-\dfrac{7}{4}\right|-\dfrac{7}{4}=-\dfrac{3}{2}\)
d: =x-5+8-x=3
a) \(\left[\left(\dfrac{3}{5}\right)^2-\left(\dfrac{2}{5}\right)^2\right]\cdot X=\left(\dfrac{1}{5}\right)^3\)
\(\left(\dfrac{3}{5}-\dfrac{2}{5}\right)\left(\dfrac{3}{5}+\dfrac{2}{5}\right)\cdot X=\dfrac{1}{125}\)
\(\dfrac{1}{5}\cdot1\cdot X=\dfrac{1}{125}\)
\(X=\dfrac{1}{125}:\dfrac{1}{5}=\dfrac{1}{25}\)
b) \(1\dfrac{2}{5}\cdot x+\dfrac{3}{7}=\dfrac{-4}{5}\)
\(1\dfrac{2}{5}\cdot x=\dfrac{-4}{5}-\dfrac{3}{7}\)
\(1\dfrac{2}{5}\cdot x=-\dfrac{43}{35}\)
\(x=-\dfrac{43}{35}:1\dfrac{2}{5}=-\dfrac{43}{49}\)
c) \(\left(3x-2\right)^2=9\)
*Nếu \(9=3^2\) thì:
\(3x-2=3\)
\(3x=5\Rightarrow x=\dfrac{5}{3}\)
*Nếu \(9=\left(-3\right)^2\) thì
\(3x-2=-3\)
\(3x=-1\Rightarrow x=-\dfrac{1}{3}\)
d) \(\left|x+\dfrac{1}{3}\right|-4=-1\)
\(\left|x+\dfrac{1}{3}\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=3\\x+\dfrac{1}{3}=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-\dfrac{10}{3}\end{matrix}\right.\)
Chúc bạn học giỏi.
a)\(\dfrac{3^2-2^2}{5^2}.x=\dfrac{1}{5^3}\)
\(\Leftrightarrow\dfrac{5}{5^2}.x=\dfrac{1}{5^3}\)
\(\Leftrightarrow\dfrac{1}{5}.x=\dfrac{1}{5^3}\)
\(\Leftrightarrow x=\dfrac{1}{25}\)
b)\(\dfrac{7}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)
\(\Leftrightarrow\dfrac{7}{5}x=-\dfrac{43}{35}\)
\(\Leftrightarrow x=\dfrac{-43}{49}\)
c)\(9x^2-12x+4=9\)
\(\Leftrightarrow9x^2-12x-5=0\)
\(\Leftrightarrow9x^2-15x+3x-5=0\)
\(\Leftrightarrow3x\left(3x-5\right)+3x-5=0\)
\(\Leftrightarrow\left(3x-5\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
d)\(\left|x+\dfrac{1}{3}\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=3\\x+\dfrac{1}{3}=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-\dfrac{10}{3}\end{matrix}\right.\)
b, \(-x-2=\dfrac{5}{4}\Rightarrow-x=\dfrac{13}{4}\Rightarrow x=-\dfrac{13}{4}\)
c, \(\dfrac{4}{3}-\left(x-\dfrac{1}{5}\right)=\left|-\dfrac{3}{10}+\dfrac{1}{2}\right|-\dfrac{1}{6}\)
\(\Rightarrow\dfrac{4}{3}-x+\dfrac{1}{5}=\left|\dfrac{1}{5}\right|-\dfrac{1}{6}\)
\(\Rightarrow-x=\dfrac{1}{5}-\dfrac{1}{6}-\dfrac{4}{3}-\dfrac{1}{5}\)
\(\Rightarrow-x=-\dfrac{3}{2}\Rightarrow x=\dfrac{3}{2}\)
d, \(\dfrac{1}{3}-\left(\dfrac{2}{3}-x+\dfrac{5}{4}\right)=\dfrac{7}{12}-\left(\dfrac{5}{2}-\dfrac{13}{6}\right)\)
\(\Rightarrow\dfrac{1}{3}-\dfrac{2}{3}+x-\dfrac{5}{4}=\dfrac{7}{12}-\dfrac{5}{2}+\dfrac{13}{6}\)
\(\Rightarrow x=\dfrac{7}{12}-\dfrac{5}{2}+\dfrac{13}{6}-\dfrac{1}{3}+\dfrac{2}{3}+\dfrac{5}{4}\)
\(\Rightarrow x=\dfrac{11}{6}\)
Chúc bạn học tốt!!!
a/dễ --> tự lm
b/ \(\left(x-\dfrac{4}{7}\right)\left(1\dfrac{3}{5}+2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{5}=0\\1\dfrac{3}{5}+2x=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\2x=\dfrac{8}{5}\Rightarrow x=\dfrac{4}{5}\end{matrix}\right.\)
Vậy...............
c/ \(\left(x-\dfrac{4}{7}\right):\left(x+\dfrac{1}{2}\right)>0\)
TH1: \(\left\{{}\begin{matrix}x-\dfrac{4}{7}>0\\x+\dfrac{1}{2}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{4}{7}\\x>-\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{4}{7}\)
TH2: \(\left\{{}\begin{matrix}x-\dfrac{4}{7}< 0\\x+\dfrac{1}{2}< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< \dfrac{4}{7}\\x< -\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow x< -\dfrac{1}{2}\)
Vậy \(x>\dfrac{4}{7}\) hoặc \(x< -\dfrac{1}{2}\) thì thỏa mãn đề
d/ \(\left(2x-3\right):\left(x+1\dfrac{3}{4}\right)< 0\)
TH1: \(\left\{{}\begin{matrix}2x-3>0\\x+1\dfrac{3}{4}< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1,5\\x< -\dfrac{7}{4}\end{matrix}\right.\)(vô lý)
TH2: \(\left\{{}\begin{matrix}2x-3< 0\\x+1\dfrac{3}{4}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< 1,5\\x>-\dfrac{7}{4}\end{matrix}\right.\)\(\Rightarrow-\dfrac{7}{4}< x< 1,5\)
Vậy...................
a, \(\dfrac{3}{7}+\dfrac{4}{7}x=\dfrac{1}{3}\)
\(\Rightarrow\) \(\dfrac{4}{7}x=\dfrac{1}{3}-\dfrac{3}{7}\)
\(\Rightarrow\) \(\dfrac{4}{7}x=\dfrac{-2}{21}\)
\(\Rightarrow x=\dfrac{-2}{21}:\dfrac{4}{7}\)
\(\Rightarrow x=\dfrac{-1}{6}\)
b, \(25-\left(5-x\right)=-7\)
\(\Rightarrow\) \(5-x=25-\left(-7\right)\)
\(\Rightarrow5-x=32\)
\(\Rightarrow x=5-32\)
\(\Rightarrow x=-27\)
c, \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Rightarrow\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{4}:x=\dfrac{-7}{20}\)
\(\Rightarrow x=\dfrac{1}{4}:\dfrac{-7}{20}\)
\(\Rightarrow x=\dfrac{-5}{7}\)
d, \(2x\left(x-\dfrac{1}{7}\right)=0\)
\(\Rightarrow\) \(\left[{}\begin{matrix}2x=0\\x-\dfrac{1}{7}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0:2\\x=0+\dfrac{1}{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{7}\end{matrix}\right.\)
e, \(\left|\dfrac{1}{2}x-\dfrac{3}{4}\right|-7=-3\)
\(\Rightarrow\left|\dfrac{1}{2}x-\dfrac{3}{4}\right|=-3+7\)
\(\Rightarrow\left|\dfrac{1}{2}x-\dfrac{3}{4}\right|=4\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{3}{4}=4\\\dfrac{1}{2}x-\dfrac{3}{4}=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=4+\dfrac{3}{4}\\\dfrac{1}{2}x=-4+\dfrac{3}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=\dfrac{19}{4}\\\dfrac{1}{2}x=\dfrac{-13}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{19}{4}:\dfrac{1}{2}\\x=\dfrac{-13}{4}:\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{19}{2}\\x=\dfrac{-13}{2}\end{matrix}\right.\)
a)\(\dfrac{3}{7}+\dfrac{4}{7}x=\dfrac{1}{3}\)
\(\dfrac{4}{7}x=\dfrac{1}{3}-\dfrac{3}{7}\)
\(\dfrac{4}{7}x=\dfrac{-2}{21}\)
\(x=\dfrac{-2}{21}:\dfrac{4}{7}\)
\(x=\dfrac{-1}{6}\)
b)\(25-\left(5-x\right)=-7\)
\(5-x=25-\left(-7\right)\)
\(5-x=32\)
x= -27
c)\(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\dfrac{1}{4}:x=\dfrac{-7}{20}\)
\(x=\dfrac{1}{4}:\dfrac{-7}{20}\)
\(x=\dfrac{-5}{7}\)
d)\(2x\left(x-\dfrac{1}{7}\right)=0\)
⇒\(\left[{}\begin{matrix}2x=0\\x-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{7}\end{matrix}\right.\)
e)\(|\dfrac{1}{2}x-\dfrac{3}{7}|-7=-3\)
\(\left|\dfrac{1}{2}x-\dfrac{3}{7}\right|=-3+7\)
\(\left|\dfrac{1}{2}x-\dfrac{3}{7}\right|=4\)
⇒\(\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{3}{4}=4\\\dfrac{1}{2}x-\dfrac{3}{4}=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=4\dfrac{3}{4}\Rightarrow x=9\dfrac{1}{2}=\dfrac{19}{2}\\\dfrac{1}{2}x=-3\dfrac{1}{4}\Rightarrow x=\dfrac{-13}{2}\end{matrix}\right.\)
5) \(\left(-2\right)^2+\sqrt{36}-\sqrt{9}+\sqrt{25}\)
=\(4+6-3+5\)
=\(12\)
2) \(\dfrac{11}{25}.\left(-24,8\right)-\dfrac{11}{25}.75,2\)
=\(\dfrac{11}{25}.\left(-24,8-75,2\right)\)
=\(\dfrac{11}{25}.\left(-100\right)\)
=\(-44\)
`(3/4)^5 * x=(3/4)^7`
`=> x= (3/4)^7 : (3/4)^5`
`=> x= (3/4)^(7-5)`
`=>x=(3/4)^2`
`=>x= 9/16`
\(\left(\dfrac{3}{4}\right)^5\cdot x=\left(\dfrac{3}{4}\right)^7\)
\(x=\left(\dfrac{3}{4}\right)^7\div\left(\dfrac{3}{4}\right)^5=\left(\dfrac{3}{4}\right)^2\)