Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Ta có: \(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}+\dfrac{12}{\sqrt{6}-3}-\sqrt{6}\)
\(=3\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-4\left(3+\sqrt{6}\right)-\sqrt{6}\)
\(=3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}-\sqrt{6}\)
\(=-11\)
3) Ta có: \(\left(\dfrac{3}{\sqrt{5}-\sqrt{2}}+\dfrac{4}{\sqrt{6}+\sqrt{2}}\right)\left(\sqrt{3}-1\right)^2\)
\(=\left(\sqrt{5}+\sqrt{2}+\sqrt{6}-\sqrt{2}\right)\left(4-2\sqrt{3}\right)\)
\(=\left(\sqrt{6}+\sqrt{5}\right)\left(4-2\sqrt{3}\right)\)
\(=4\sqrt{6}-6\sqrt{2}+4\sqrt{5}-2\sqrt{15}\)
a: \(=\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}=3\)
b: \(=\left(-\sqrt{5}-2+\sqrt{5}-\sqrt{3}\right)\cdot\left(2\sqrt{3}+3\right)\)
\(=-\sqrt{3}\left(2+\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)
\(=-\sqrt{3}\left(7+4\sqrt{3}\right)=-7\sqrt{3}-12\)
c: \(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}=\dfrac{1}{1+\sqrt{2}}=\sqrt{2}-1\)
Bài 1 :
a) \(\sqrt{4\left(a-3\right)^2}+2\sqrt{\left(a^2+4a+4\right)}\)
= \(2\left|a-3\right|+2\left|a+2\right|\)
\(=2.\left(-a+3\right)+2\left(-a-2\right)\)
b) có sai đề ko ?
c) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}=4x-\sqrt{8}+\sqrt{\dfrac{x^2\left(x+2\right)}{x+2}}=4x-2\sqrt{4}+x=3x-2\sqrt{4}\)
b: \(=\sqrt{5}-1-\sqrt{5}-1=-2\)
c: \(=\dfrac{\left(2\sqrt{2}+\sqrt{3}-2\sqrt{2}+\sqrt{3}\right)}{2\sqrt{3}}=1\)
d: \(=\dfrac{\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}-1-\sqrt{5}-1}{\sqrt{2}}=-\sqrt{2}\)
M = \(\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\times\sqrt{2}+\sqrt{20}\)
= \(2-\sqrt{6-2\sqrt{5}}+\sqrt{20}\)
= \(2-\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{20}\)
= 2 \(-\sqrt{5}+1+\sqrt{20}\)
= 3 + \(\sqrt{5}\)
\(M=\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\sqrt{2}+\sqrt{20}=2-\sqrt{5-2\sqrt{5}+1}+\sqrt{20}=2-\sqrt{5}-1+2\sqrt{5}=1+\sqrt{5}\) \(N=\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{\sqrt{5}-\sqrt{2}}=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(5-2\right)=-3\)
\(\left(\dfrac{3}{3}\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}\right)\left(3\sqrt{\dfrac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)
=\(\left(\dfrac{3}{2}\sqrt{6}+\dfrac{2\sqrt{6}}{3}-2\sqrt{6}\right)\left(\dfrac{3\sqrt{2}}{3}-\sqrt{12}-\sqrt{6}\right)\)
=\(\text{[}\sqrt{6}\left(\dfrac{3}{2}+\dfrac{2}{3}-2\right)\text{]}.\left(-2\sqrt{3}\right)\)
=\(\dfrac{1}{6}\sqrt{6}.\left(-2\sqrt{3}\right)=-\sqrt{2}\)
Giải:
\(\left(\dfrac{3}{2}\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}\right).\left(3\sqrt{\dfrac{2}{3}}-\sqrt{2}-\sqrt{6}\right).\left(-\sqrt{6}\right)\)
\(=\left(\sqrt{\dfrac{27}{2}}+\sqrt{\dfrac{8}{3}}-\sqrt{24}\right).\left(\sqrt{6}-\sqrt{2}-\sqrt{6}\right).\left(-\sqrt{6}\right)\)
\(=\left(\dfrac{\sqrt{6}}{6}\right).\left(-\sqrt{2}\right).\left(-\sqrt{6}\right)\)
\(=\sqrt{2}\)
Vậy ...