\(\left\{{}\begin{matrix}x+y+xy=3\\y+z+yz=1\\z+x+xz=1\end{matrix}\right.\). Giải hệ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

\(hpt\Leftrightarrow\left\{{}\begin{matrix}x+y+xy+1=4\\y+z+yz+1=2\\x+z+xz+1=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=4\\\left(y+1\right)\left(z+1\right)=2\\\left(x+1\right)\left(z+1\right)=2\end{matrix}\right.\)

Lấy \(\dfrac{pt\left(2\right)}{pt\left(3\right)}\Leftrightarrow\dfrac{y+1}{x+1}=1\)\(\Leftrightarrow y+1=x+1\)\(\Leftrightarrow x=y\)

Thay vào \(pt(1)\)\(\Leftrightarrow x^2+2x=3\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=y=1\\x=y=-3\end{matrix}\right.\)

Thay vào \(pt\left(3\right)\)\(\Leftrightarrow\left[{}\begin{matrix}z+1+z=1\\z-3-3z=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}z=0\\z=-2\end{matrix}\right.\)

Vậy....

8 tháng 8 2017

\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)

Lấy (2) cộng (3) ta được

\(x^2+y^2-yz-zx=2\) (4)

Lấy (1) - (4) ta được

\(2x\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)

Xét 2 TH rồi thay vào tìm được y và z

8 tháng 8 2017

1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)

Đến đây thì dễ rồi nhé

28 tháng 1 2019

ta có : x+xy+y=1

<=> x(y+1) + (y+1)=2

<=> (x+1)(y+1)=2

tương tự(y+1)(z+1)=5

(x+1)(z+1)=10

ta đc hệ pt............

đặt x+1=a,y+1=b,z+1=c

ta có : ab=2 (1) , bc=5 (2) , ac=10

=> abc=2c , abc=5a , abc= 10b

=> 5a=10b=2c

+ 5a=10b

=> a=2b . (1)=> 2b^2=1=> b=1 hoặc b=-1

=> a=2 hoăc a=-2 . (2)=> c=5 hoăc c=-5

like nha :))

11 tháng 1 2019

Khó hiểu

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Lời giải:

HPT \(\Leftrightarrow \left\{\begin{matrix} x(x+y+z)=2\\ y(y+z+x)=3\\ z(z+x+y)=4\end{matrix}\right.(*)\).

Dễ thấy $x+y+z\neq 0$. Khi đó ta có:

\(\frac{x}{y}=\frac{x(x+y+z)}{y(y+z+x)}=\frac{2}{3}(1)\)

\(\frac{y}{z}=\frac{y(y+z+x)}{z(z+x+y)}=\frac{3}{4}(2)\)

Từ \((1);(2)\Rightarrow \frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) .

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k; y=3k; z=4k\)

Thay vào PT thứ nhất của $(*)$ suy ra:

\(2k(2k+3k+4k)=2\)

\(\Leftrightarrow 18k^2=2\Rightarrow k=\pm \frac{1}{3}\)

Nếu \(k=\frac{1}{3}\Rightarrow (x,y,z)=(2k,3k,4k)=(\frac{2}{3}; 1; \frac{4}{3})\)

Nếu \(k=\frac{-1}{3}\Rightarrow (x,y,z)=(2k,3k,4k)=(\frac{-2}{3}; -1; \frac{-4}{3})\)

25 tháng 1 2018

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}=\dfrac{9}{9}=1\)

Dau bang xay ra khi x=y=z=3 ( vi x+y+z=9)

27 tháng 11 2018

3(x2 + y2 + x2) = 3[(x + y + z)2 - 2(xy + yz + zx)] = 3(9 + 2) = 33

Pt thứ 3 tương đương với pt:

x3 + y3 + z3 + 6 = 33

<=> x3 + y3 + z3 = 27 = (x + y + z)3

<=> (x + y + z)3 - x3 - y3 - z3 = 0

<=> 3(x + y)(y + z)(z + x) = 0

Đến đây khá dễ rồi, tự làm tiếp nhé

4 tháng 1 2018

BẤT ĐẲNG THỨC SCHUR VÀ PHƯƠNG PHÁP ĐỔI BIẾN P,Q,R - Tài liệu, chuyên đề, phương pháp về Bất đẳng thức - Diễn đàn Toán học x+y+z=p; xy+yz+xz=q; xyz=r

18 tháng 2 2017

\(\left\{\begin{matrix}x+xy+y=1\\y+yz+z=3\\z+zx+x=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}\left(x+1\right)\left(y+1\right)=2\left(1\right)\\\left(y+1\right)\left(z+1\right)=4\left(2\right)\\\left(z+1\right)\left(x+1\right)=8\left(3\right)\end{matrix}\right.\)

Lấy 2(1) - (2) ta được

\(2\left(x+1\right)\left(y+1\right)-\left(y+1\right)\left(z+1\right)=0\)

\(\Leftrightarrow\left(y+1\right)\left(2x-z+1\right)=0\)

\(\Leftrightarrow\left\{\begin{matrix}y=-1\\z=2x+1\end{matrix}\right.\)

Với y = -1 thì hệ vô nghiệm

Với z = 2x + 1 thì thế vô 3 được

\(\left(x+1\right)^2=4\)

\(\Leftrightarrow\left[\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

Với x = 1 thì

\(\Rightarrow\left\{\begin{matrix}y=0\\z=3\end{matrix}\right.\)

Với x = - 3 thì

\(\Rightarrow\left\{\begin{matrix}y=-2\\z=-5\end{matrix}\right.\)

18 tháng 2 2017

\(\left\{\begin{matrix}x+xy+y=1\left(1\right)\\y+yz+z=3\left(2\right)\\z+zx+x=7\left(3\right)\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x\left(y+1\right)+\left(y+1\right)=2\\y\left(z+1\right)+\left(z+1\right)=4\\z\left(x+1\right)+\left(x+1\right)=8\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}\left(y+1\right)\left(x+1\right)=2\left(1\right)\\\left(z+1\right)\left(y+1\right)=4\left(2\right)\\\left(x+1\right)\left(z+1\right)=8\left(3\right)\end{matrix}\right.\)(II)

Nhân theo vế: \(\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2=2.4.8=64\)

\(\Leftrightarrow\left[\begin{matrix}\left(x+1\right)\left(y+1\right)\left(z+1\right)=-8\left(5\right)\\\left(x+1\right)\left(y+1\right)\left(z+1\right)=8\left(6\right)\end{matrix}\right.\)

(5) và (II) \(\Leftrightarrow\left\{\begin{matrix}z+1=-4\\x+1=-2\\y+1=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}z=-5\\x=-1\\y=-2\end{matrix}\right.\)

(6)và(II)\(\Leftrightarrow\left\{\begin{matrix}z+1=4\\x+1=2\\y+1=1\end{matrix}\right.\) \(\Leftrightarrow\left\{\begin{matrix}z=3\\x=1\\y=0\end{matrix}\right.\)