Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+y^2+y=8\\\left(x^2+x\right)\left(y^2+y\right)=12\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2+x=a\\y^2+y=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=8\\ab=12\end{matrix}\right.\) theo Viet đảo, a và b là nghiệm:
\(t^2-8t+12=0\Rightarrow\left[{}\begin{matrix}t=6\\t=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=6\\y^2+y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=2\\y^2+y=6\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x-6=0\\y^2+y-2=0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x-2=0\\y^2+y-6=0\end{matrix}\right.\end{matrix}\right.\)
Bạn tự bấm máy
b/
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+xy+1=0\\\left(x+y\right)^2-2xy-x-y=22\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+2xy+2=0\\\left(x+y\right)^2-2xy-x-y-22=0\end{matrix}\right.\)
\(\Rightarrow\left(x+y\right)^2+\left(x+y\right)-20=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=4\Rightarrow xy=-5\\x+y=-5\Rightarrow xy=4\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=4\\xy=-5\end{matrix}\right.\) thì x; y là nghiệm:
\(t^2-4t-5=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=5\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(-1;5\right);\left(5;-1\right)\)
TH2: \(\left\{{}\begin{matrix}x+y=-5\\xy=4\end{matrix}\right.\) thì x; y là nghiệm:
\(t^2+5t+4=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-4\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(-1;-4\right);\left(-4;-1\right)\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) . Khi đó hệ phương trình trở thành :
\(\left\{{}\begin{matrix}a+b=-1\\a^2-a-2b=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-a-1\left(1\right)\\a^2+a-20=0\left(2\right)\end{matrix}\right.\)
Xét phương trình (2) : \(a^2+a-20=0\)
\(\Delta=1+80=81>0\)
\(\Rightarrow\left\{{}\begin{matrix}a_1=\frac{-1+9}{2}=4\\a_1=\frac{-1-9}{2}=-5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b_1=-5\\b_2=4\end{matrix}\right.\)
Với \(\left(a_1;b_1\right)=\left(4;-5\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=4\\xy=-5\end{matrix}\right.\Rightarrow x^2-4x-5=0\)
\(\Delta=16+20=36>0\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{4+6}{2}=5\\x_2=\frac{4-6}{2}=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y_1=-1\\y_2=5\end{matrix}\right.\)
Với \(\left(a_2;b_2\right)=\left(-5;4\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=-5\\xy=4\end{matrix}\right.\Rightarrow x^2+5x+4=0\)
\(\Delta=25-16=9>0\)
\(\Rightarrow\left\{{}\begin{matrix}x_3=\frac{-5+3}{2}=-1\\x_4=\frac{-5-3}{2}=-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y_3=-4\\y_4=-1\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}\left(x_1;y_1\right)=\left(5;-1\right)\\\left(x_1;y_2\right)=\left(-1;5\right)\\\left(x_3;y_3\right)=\left(-1;-4\right)\\\left(x_4;y_4\right)=\left(-4;-1\right)\end{matrix}\right.\)
Câu a: Thế y=5-2x rồi giải pt bậc2
Câu b : từ pt thứ 2, tương đương (x-3)(y-3)=0, xét 2 TH rồi thế vào pt thứ 1
Câu c: từ pt 1 suy ra 2x = 2-3y
Nhân 2 vào pt 2 rồi thế vào
mấy bài dạng như này mk sẽ hướng dẩn nha .
a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha
b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)
\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................
c) đây là phương trình đối xứng loại 1 , có trên mang nha .
câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .
a/ \(\left\{{}\begin{matrix}x+y+xy=3\\xy\left(x+y\right)=2\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=3\\ab=2\end{matrix}\right.\)
\(\Rightarrow\) Theo Viet đảo, a và b là nghiệm của: \(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=1\\xy=2\end{matrix}\right.\) theo Viet đảo, x và y là nghiệm của:
\(t^2-t+2=0\) (vô nghiệm)
TH2: x và y là nghiệm của: \(t^2-2t+1=0\Rightarrow t=1\Rightarrow x=y=1\)
b/ \(\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=2xy+4\\x+y=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+y=6\\xy=8\end{matrix}\right.\)
Theo Viet đảo, x và y là nghiệm: \(t^2-6t+8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=4\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(4;2\right);\left(2;4\right)\)
c/ Trừ vế với vế:
\(x^2-y^2-2x+2y=y-x\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)-3\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-3\right)=0\Rightarrow\left[{}\begin{matrix}y=x\\y=3-x\end{matrix}\right.\)
Thay vào pt đầu:
\(\left[{}\begin{matrix}x^2-2x=x\\x^2-2x=3-x\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\left(x-3\right)=0\\x^2-x-3=0\end{matrix}\right.\) \(\Rightarrow...\)
d/ Sao có t từ đâu vào đây thế này? :(
e/ \(\Leftrightarrow\left\{{}\begin{matrix}4x^2-2y^2=2\\xy+x^2=2\end{matrix}\right.\) \(\Rightarrow3x^2-xy-2y^2=0\)
\(\Rightarrow\left(x-y\right)\left(3x+2y\right)=0\) \(\Rightarrow\left[{}\begin{matrix}y=x\\y=-\frac{3}{2}x\end{matrix}\right.\)
Thay vào pt đầu: \(\left[{}\begin{matrix}2x^2-x^2=1\\2x^2-\left(-\frac{3}{2}x\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=1\\x^2=-4\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(1;1\right);\left(-1;-1\right)\)
\(x+y+xy+1=0\)
\(\Leftrightarrow x\left(y+1\right)+y+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\)
Thế xuống pt dưới...