Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x+my=2\left(1\right)\\mx-2y=1\left(2\right)\end{matrix}\right.\)
thay pt (1) vào pt (2) ta duoc:\(\left\{{}\begin{matrix}x+my=2\\mx-\left(x+my\right)y=1\left(3\right)\end{matrix}\right.\)
PT (3) tương đương: \(mx-y^2m-yx-1=0\)
<=>\(-y^2m-yx+mx-1=0\)
\(\Delta=b^2-4ac=x^2-4.\left(-m\right).\left(mx-1\right)=x^2+4m^2x-4m\)
theo Vi-ét ta có:\(\left\{{}\begin{matrix}S=\dfrac{-b}{a}=\dfrac{-x}{m}\\P=\dfrac{c}{a}=\dfrac{-mx+1}{m}\end{matrix}\right.\)
Để pt có hai nghiệm lớn hơn 0<=>\(\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)hay \(\left\{{}\begin{matrix}x^2+4m^2x-4m>0\\\dfrac{-x}{m}>0\\\dfrac{-mx+1}{m}>0\end{matrix}\right.\)
tới chỗ này là tìm m được rồi.Chúc bạn học tốt
hệ có nghiệm duy nhất <=> \(\dfrac{1}{m}\ne\dfrac{m}{-2}\)\(\Leftrightarrow m^2\ne-2\) đúng \(\forall m\)
vây hệ luôn có nghiệm duy nhất là x=\(\dfrac{m+4}{m^2+2}\) và y=\(\dfrac{2m-1}{m^2+2}\)
theo giả thiết x>0 , y>0 =>
\(\left\{{}\begin{matrix}\dfrac{m+4}{m^2+2}>0\\\dfrac{2m-1}{m^2+2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m+4>0\\2m-1>0\end{matrix}\right.\)vì m2+2>0 \(\forall m\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-4\\m>\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow m>\dfrac{1}{2}\)
1:
a)\(\hept{\begin{cases}nx+x=5
\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)