Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Lấy PT $(1)$ trừ PT $(2)$ ta có:
\(x^2-y^2=3y-3x\)
\(\Leftrightarrow (x-y)(x+y)+3(x-y)=0\Leftrightarrow (x-y)(x+y+3)=0\)
$\Rightarrow x-y=0$ hoặc $x+y+3=0$
Nếu $x-y=0\Leftrightarrow x=y$. Thay vào PT $(1)$:
\(x^2=3x-2\Leftrightarrow x^2-3x+2=0\Leftrightarrow (x-1)(x-2)=0\)
$\Rightarrow x=1$ hoặc $x=2$
Tương ứng ta thu được $y=1$ hoặc $y=2$
Nếu $x+y+3=0\Leftrightarrow y=-(x+3)$. Thay vào PT $(1)$:
\(x^2=-3(x+3)-2\Leftrightarrow x^2=-3x-11\Leftrightarrow x^2+3x+11=0\)
\(\Leftrightarrow (x+\frac{3}{2})^2=\frac{-35}{4}< 0\) (vô lý)
Vậy..........
Bài 2:
Lấy PT(1) trừ PT(2) ta có:
\(2x-2y+\frac{1}{y}-\frac{1}{x}=\frac{3}{x}-\frac{3}{y}\)
\(\Leftrightarrow 2(x-y)+(\frac{4}{y}-\frac{4}{x})=0\)
\(\Leftrightarrow (x-y)+\frac{2(x-y)}{xy}=0\)
\(\Leftrightarrow (x-y).\frac{2+xy}{xy}=0\Rightarrow \left[\begin{matrix} x=y\\ xy=-2\end{matrix}\right.\)
Nếu $x=y$. Thay vào PT (1) có:
\(2x+\frac{1}{x}=\frac{3}{x}\Leftrightarrow 2x-\frac{2}{x}=0\Leftrightarrow x^2-1=0\)
\(\Rightarrow x^2=1\Rightarrow x=\pm 1\Rightarrow y=\pm 1\) (tương ứng)
Nếu $xy=-2\Rightarrow \frac{1}{y}=\frac{-x}{2}$
Thay vào PT(1): $2x-\frac{x}{2}=\frac{3}{x}$
$\Leftrightarrow x^2=2\Rightarrow x=\pm \sqrt{2}$
$\Rightarrow y=\mp \sqrt{2}$
Vậy........
1. Đề này là 18 chứ không phải 15 nhé
\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+x+\sqrt{y^2+x+y+1}+y=18\left(1\right)\\\sqrt{x^2+x+y+1}-x+\sqrt{y^2+x+y+1}-y=2\left(2\right)\end{matrix}\right.\)
Lấy (1) + (2) và (1) - (2) ta được hệ mới
\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+\sqrt{y^2+x+y+1}=10\\x+y=8\end{matrix}\right.\)
\(\Rightarrow x=8-y\)
\(\Rightarrow\sqrt{x^2+9}+\sqrt{y^2+9}=10\)\(\Leftrightarrow\sqrt{x^2+9}=10-\sqrt{y^2+9}\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\x^2+9=100-20\sqrt{y^2+9}+y^2+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\x^2=100-20\sqrt{y^2+9}+y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\\left(8-y\right)^2=100-20\sqrt{y^2+9}+y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\9y^2-72y+144=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
2. Dễ thấy x = y = 0 không phải là nghiệm của phương trình
HPT\(\Leftrightarrow\left\{{}\begin{matrix}1-\dfrac{12}{y+3x}=\dfrac{2}{\sqrt{x}}\left(1\right)\\1+\dfrac{12}{y+3x}=\dfrac{6}{\sqrt{y}}\left(2\right)\end{matrix}\right.\)
Lấy (1) + (2) ; (1) - (2) ta được
\(\left\{{}\begin{matrix}1=\dfrac{1}{\sqrt{x}}+\dfrac{3}{\sqrt{y}}\left(3\right)\\\dfrac{12}{y+3x}=\dfrac{3}{\sqrt{y}}-\dfrac{1}{\sqrt{x}}\left(4\right)\end{matrix}\right.\)
Lấy ( 3) nhân (4)
\(\dfrac{12}{y+3x}=\dfrac{9}{y}-\dfrac{1}{x}=\dfrac{9x-y}{xy}\)
\(\Leftrightarrow27x^2-6xy-y^2=0\Leftrightarrow\left(9x+y\right)\left(3x-y\right)=0\)
\(\Rightarrow y=3x\)
đến đây thì dễ rồi
a/ \(\left\{{}\begin{matrix}\left(x^2+x\right)+\left(y^2+y\right)=18\\\left(x^2+x\right)\left(y^2+y\right)=72\end{matrix}\right.\)
Theo Viet đảo, \(x^2+x\) và \(y^2+y\) là nghiệm của:
\(t^2-18t+72=0\Rightarrow\left[{}\begin{matrix}t=12\\t=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=6\\y^2+y=12\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=12\\y^2+y=6\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\left\{2;-3\right\}\\y=\left\{3;-4\right\}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\left\{3;-4\right\}\\y=\left\{2;-3\right\}\end{matrix}\right.\end{matrix}\right.\)
b/ ĐKXĐ: ...
\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\x=\frac{3y-1}{y}\end{matrix}\right.\)
Nhận thấy \(y=\frac{1}{3}\) không phải nghiệm
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\\frac{1}{x}=\frac{y}{3y-1}\end{matrix}\right.\) \(\Rightarrow\frac{y}{3y-1}+\frac{1}{y+1}=1\)
\(\Leftrightarrow y\left(y+1\right)+3y-1=\left(3y-1\right)\left(y+1\right)\)
\(\Leftrightarrow y^2-y=0\Rightarrow\left[{}\begin{matrix}y=0\left(l\right)\\y=1\end{matrix}\right.\) \(\Rightarrow x=2\)
Nhận thấy \(y=0\) không phải nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-2x^2y+3y=0\\2xy^2-y^3-3y=0\end{matrix}\right.\)
\(\Rightarrow x^3-2x^2y+2xy^2-y^3=0\)
\(\Leftrightarrow\left(x-y\right)^3+xy\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-xy+y^2\right)=0\)
\(\Leftrightarrow x=y\Rightarrow2x^2-x^2=3\Rightarrow x=y=\pm\sqrt{3}\)
bn lm sai r kq la (1;4) (4;1)