Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x-y=10\\\dfrac{-120\left(x-y\right)}{xy}=\dfrac{2}{5}\end{matrix}\right.\) \(\Rightarrow\dfrac{-1200}{xy}=\dfrac{2}{5}\Rightarrow xy=-3000\)
Ta được hệ: \(\left\{{}\begin{matrix}x-y=10\\xy=-3000\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=y+10\\xy=-3000\end{matrix}\right.\)
Thay pt trên vào dưới:
\(\left(y+10\right).y=-3000\Rightarrow y^2+10y+3000=0\)
\(\Rightarrow\) pt vô nghiệm
Vậy hệ đã cho vô nghiệm
\(\left\{{}\begin{matrix}X+44=Y\\\dfrac{120}{X}+\dfrac{11}{30}=\dfrac{120}{Y}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}X=Y-44\\3600Y+11XY=3600X\end{matrix}\right.\)
\(3600Y+11\left(Y-44\right)Y=3600\left(Y-44\right)\\ =11Y^2-484Y+158400 =0\)
\(\Delta'=\left(-242\right)^2-158400.11=-1683836\)
=> DO \(\Delta'>0\) nên pt vô nghiệm
a) ĐK xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{6}{y}=9\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{7}{x}=16\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{7}{16}\\y=-\dfrac{42}{17}\end{matrix}\right.\)
Vậy S = {(\(\dfrac{7}{16};-\dfrac{42}{17}\))}
b) Đk xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{1}{y}=14\\\dfrac{8}{x}-\dfrac{1}{y}=-8\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{13}{x}=6\\\dfrac{5}{x}+\dfrac{1}{y}=14\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{13}{6}\\y=\dfrac{13}{152}\end{matrix}\right.\)
Vậy S={(\(\dfrac{13}{6};\dfrac{13}{152}\))}
c) ĐK xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{7}{y}=21\\-\dfrac{2}{x}-\dfrac{5}{y}=-11\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{2}{y}=10\\\dfrac{2}{x}+\dfrac{7}{y}=21\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{1}{5}\\x=-\dfrac{1}{7}\end{matrix}\right.\)
Vậy S={(\(-\dfrac{1}{7};\dfrac{1}{5}\))}
d) ĐK xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{9}{x}+\dfrac{2}{y}=22\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{14}{x}=35\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)
Vậy S={(0,4;-4)}
e) ĐKXĐ : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{5}{y}=10\\-\dfrac{3}{x}-\dfrac{7}{y}=8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-\dfrac{2}{y}=18\\\dfrac{3}{x}+\dfrac{5}{y}=10\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{1}{9}\\x=\dfrac{3}{55}\end{matrix}\right.\) 'Vậy....
\(\left\{{}\begin{matrix}\dfrac{120}{x}=\dfrac{80}{y}\\\dfrac{104}{y}-1=\dfrac{96}{x}\end{matrix}\right.\)(1)
Đặt \(a=\dfrac{1}{x}\);\(b=\dfrac{1}{y}\)
Vậy (1)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}120a=80b\\104b-1=96a\left(2\right)\end{matrix}\right.\)
Ta có \(120a=80b\Leftrightarrow b=\dfrac{3}{2}a\)
Thay \(b=\dfrac{3}{2}a\) vào (2)\(\Leftrightarrow104.\dfrac{3}{2}a-1=96a\Leftrightarrow156a-1=96a\Leftrightarrow60a=1\Leftrightarrow a=\dfrac{1}{60}\)
Vậy \(b=\dfrac{3}{2}.a=\dfrac{3}{2}.\dfrac{1}{60}=\dfrac{1}{40}\)
Vậy \(\left\{{}\begin{matrix}a=\dfrac{1}{60}\\b=\dfrac{1}{40}\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=60\\y=40\end{matrix}\right.\)
Vậy (x;y)=(60;40)
\(\left\{{}\begin{matrix}\dfrac{3}{x}=\dfrac{2}{y}\\\dfrac{104}{y}-1=\dfrac{96}{x}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{96}{x}=\dfrac{64}{y}\\\dfrac{104}{y}-1=\dfrac{96}{x}\end{matrix}\right.\) \(\Rightarrow\dfrac{104}{y}-1=\dfrac{64}{y}\)
\(\Rightarrow\dfrac{40}{y}=1\Rightarrow y=40\)
\(\Rightarrow x=\dfrac{3y}{2}=60\)
Vậy nghiệm của hệ là \(\left(x;y\right)=\left(60;40\right)\)
hỏi trước tí, bạn biết giải cái hệ này chứ?
\(\left\{{}\begin{matrix}2x+y=3\\2x-3y=1\end{matrix}\right.\)
\(a.\left\{{}\begin{matrix}4\dfrac{1}{x}+\dfrac{1}{y}=12\\\dfrac{1}{x}+\dfrac{1}{y}=-3\end{matrix}\right.\) (1)
ĐK xác định : x≠0 ; y≠0
Đặt ẩn phụ : a = \(\dfrac{1}{x}\) ; b = \(\dfrac{1}{y}\)
Thay vào (1) ta được :
\(\left\{{}\begin{matrix}4a+b=12\\a+b=-3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}3a=15\\a+b=-3\end{matrix}\right.< =>\left\{{}\begin{matrix}a=5\\b=-8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{1}{8}\end{matrix}\right.\)
Vậy S = {(\(\dfrac{1}{5};-\dfrac{1}{8}\))}
\(b.\left\{{}\begin{matrix}5\dfrac{1}{x}+2\dfrac{1}{y}=6\\2\dfrac{1}{x}-\dfrac{1}{y}=3\end{matrix}\right.\) (2)
ĐK xác định : x≠0 ; y≠0
Đặt ẩn phụ : a = 1/x ; b = 1/y
Thay vào (2) ta được : \(\left\{{}\begin{matrix}5a+2b=6\\2a-b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}5a+2b=6\\4a-2b=6\end{matrix}\right.< =>\left\{{}\begin{matrix}9a=12\\2a-b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=\dfrac{4}{3}\\b=-\dfrac{1}{3}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-3\end{matrix}\right.\)
Vậy S = {(\(\dfrac{3}{4};-3\) )}
c) \(\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.\)
ĐK xác định : x≠0 ; y ≠0
Áp dụng quy tác cộng đại số ta có :
\(\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\3\dfrac{1}{x}-3\dfrac{1}{y}=15\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-3\dfrac{1}{y}=-13\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{3}{13}\\x=\dfrac{3}{28}\end{matrix}\right.\)
Vậy S = {(\(\dfrac{3}{28};\dfrac{3}{13}\))}
d) \(\left\{{}\begin{matrix}\dfrac{1}{x}-4\dfrac{1}{y}=5\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.\)
ĐK xác định : x≠0 ; y≠0
áp dụng quy tắc cộng đại số ta có :
\(\left\{{}\begin{matrix}\dfrac{1}{x}-4\dfrac{1}{y}=5\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.< =>\left\{{}\begin{matrix}2\dfrac{1}{x}-8\dfrac{1}{y}=10\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-5\dfrac{1}{y}=9\\\dfrac{1}{x}-4\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{5}{9}\\x=-\dfrac{5}{11}\end{matrix}\right.\)
Vậy S = {(\(-\dfrac{5}{11};-\dfrac{5}{9}\))}
e) ĐK xác định x≠0 ; y≠0
\(\left\{{}\begin{matrix}\dfrac{1}{x}-3\dfrac{1}{y}=4\\6\dfrac{1}{x}-\dfrac{1}{y}=2\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{1}{x}-3\dfrac{1}{y}=4\\18\dfrac{1}{x}-3\dfrac{1}{y}=6\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-17\dfrac{1}{x}=-2\\\dfrac{1}{x}-3\dfrac{1}{y}=4\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=\dfrac{17}{2}\\y=-\dfrac{17}{22}\end{matrix}\right.\)
Vậy S={(\(\dfrac{17}{2};-\dfrac{17}{22}\))}
a)\(\left\{{}\begin{matrix}\dfrac{10}{\sqrt{12x-3}}+\dfrac{5}{\sqrt{4y+1}}=1\\\dfrac{7}{\sqrt{12x-3}}+\dfrac{8}{\sqrt{4y+1}}=1\end{matrix}\right.\)
ĐK: \(x>\dfrac{1}{4};y>-\dfrac{1}{4}\), đặt \(a=\dfrac{1}{\sqrt{12x-3}};b=\dfrac{1}{\sqrt{4y+1}}\)với a,b>0
khi đó, ta có hệ phương mới \(\left\{{}\begin{matrix}10a+5b=1\\7a+8b=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}10a+5b=1\\7a+8b=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}80a+40b=8\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}45a=3\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\35.\dfrac{1}{15}+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\b=\dfrac{1}{15}\end{matrix}\right.\)
thay \(\dfrac{1}{\sqrt{12x-3}}=a\) hay \(\dfrac{1}{\sqrt{12x-3}}=\dfrac{1}{15}\Rightarrow\sqrt{12x-3}=15\Leftrightarrow12x-3=225\Leftrightarrow12x=228\Leftrightarrow x=19\left(TMĐK\right)\) thay \(\dfrac{1}{\sqrt{4y+1}}=b\) hay
\(\dfrac{1}{\sqrt{4y+1}}=\dfrac{1}{15}\Rightarrow\sqrt{4y+1}=15\Leftrightarrow4y+1=225\Leftrightarrow4y=224\Leftrightarrow y=56\left(TMĐK\right)\)
Vậy (x;y)=(9;56) là nghiệm duy nhất của hệ phương trình đã cho.
b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=4\\x\left(1+4y\right)+y=2\end{matrix}\right.\)
ĐK: x,y#0, khi đó \(\dfrac{1}{x}+\dfrac{1}{y}=4\Rightarrow x+y=4xy\)
Do đó \(x\left(1+4y\right)+y=2\Leftrightarrow x+4xy+y=2\Leftrightarrow x+x+y+y=2\Leftrightarrow2\left(x+y\right)=2\Leftrightarrow x+y=1\)
Mà \(4xy=x+y\Leftrightarrow4xy=1\Leftrightarrow xy=\dfrac{1}{4}\)
Vậy \(x+y=1;xy=\dfrac{1}{4}\)
Do đó x,y là nghiệm của phương trình:
\(t^2-t+\dfrac{1}{4}=0\)
\(\Delta=b^2-4ac=1-4.1.\dfrac{1}{4}=0\)
Phương trình có nghiêm kép \(x_1=x_2=-\dfrac{b}{2a}=-\dfrac{-1}{2}=\dfrac{1}{2}\)
\(\Rightarrow x=y=\dfrac{1}{2}\left(nhận\right)\)
Vậy (x;y)=\(\left(\dfrac{1}{2};\dfrac{1}{2}\right)\) là nghiệm duy nhất của hệ phương trình đã cho.
\(\left\{{}\begin{matrix}x-y=10\\\dfrac{120}{x}-\dfrac{120}{y}=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10+y\\\dfrac{120}{10+y}-\dfrac{120}{y}=0,4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=10+y\\\dfrac{120y-1200-120y}{y\left(10+y\right)}=0,4\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow-3000=y^2+10y\\ \Leftrightarrow y^2+10y+3000=0\\\Leftrightarrow y^2+10y+25=-2975\\ \Leftrightarrow\left(y+5\right)^2=-2975\left(vô\:lí\right)\)
\(\Rightarrow\)pt vô nghiệm
vậy hệ phương trình đã cho vô nghiệm