Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Khi \(m=-\sqrt{2}\). HPT tương đương:
\(\left\{\begin{matrix} (-\sqrt{2}+1)x-y=3\\ -\sqrt{2}x+y=-\sqrt{2}\end{matrix}\right.\)
Cộng theo vế: \(\Rightarrow (1-2\sqrt{2})x=3-\sqrt{2}\Rightarrow x=\frac{3-\sqrt{2}}{1-2\sqrt{2}}=\frac{1-5\sqrt{2}}{7}\)
\(\Rightarrow y=(m+1)x-3=\frac{(-\sqrt{2}+1)(1-5\sqrt{2})}{7}-3=-\frac{10+6\sqrt{2}}{7}\)
b)
\(\left\{\begin{matrix} (m+1)x-y=3\\ mx+y=m\end{matrix}\right.\Rightarrow \left\{\begin{matrix} y=(m+1)x-3\\ mx+y=3\end{matrix}\right.\)
\(\Rightarrow mx+[(m+1)x-3]=m\)
\(\Leftrightarrow x(2m+1)=m+3\)
Để hệ có bộ nghiệm duy nhất thì $x$ là duy nhất.
Với \(m=-\frac{1}{2}\Rightarrow x.0=\frac{5}{2}\) (vô lý, pt vô nghiệm)
Với \(m\neq -\frac{1}{2}\), pt có nghiệm duy nhất \(x=\frac{m+3}{2m+1}\)
\(\Rightarrow y=(m+1)x-3=\frac{m^2-2m}{2m+1}\)
Do đó: \(x+y=\frac{m^2-m+3}{2m+1}\)
Để \(x+y>0\Leftrightarrow \frac{m^2-m+3}{2m+1}>0\Leftrightarrow \frac{(m-\frac{1}{2})^2+\frac{11}{4}}{2m+1}>0\)
\(\Leftrightarrow 2m+1>0\Leftrightarrow m> \frac{-1}{2}\)
Vậy đk là \(m> \frac{-1}{2}\)
x=(2m+3)/(m^2+1)
y=(3m-2)/(m^2+1)
y=x-1<=> (3m-2)/(m^2+1)=(2m+3-m^2-1)/(m^2+1)
<=>m^2+m-4=0=>\(\left[\begin{matrix}m=\frac{-1-\sqrt{17}}{2}\\m=\frac{-1+\sqrt{17}}{2}\end{matrix}\right.\)
- Với \(x\ge-1\Rightarrow\left\{{}\begin{matrix}-mx+y=3\\x+y=1\end{matrix}\right.\) \(\Rightarrow\left(m+1\right)x=-2\)
\(m\ne-1\Rightarrow x=-\frac{2}{m+1}\ge-1\Rightarrow\frac{2}{m+1}-1\ge0\Rightarrow\frac{1-m}{m+1}\ge0\Rightarrow-1< m\le1\)
- Với \(x< -1\Rightarrow\left\{{}\begin{matrix}-mx+y=3\\-x+y=3\end{matrix}\right.\) \(\Rightarrow\left(m-1\right)x=0\)
Phương trình luôn luôn vô nghiệm hoặc vô số nghiệm
Vậy để hệ có nghiệm duy nhất thì \(-1< m\le1\)
1: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{m-1}\ne\dfrac{1}{-1}\ne-1\)
=>\(\dfrac{m+m-1}{m-1}\ne0\)
=>\(\dfrac{2m-1}{m-1}\ne0\)
=>\(m\notin\left\{\dfrac{1}{2};1\right\}\)(1)
\(\left\{{}\begin{matrix}mx+y=3\\\left(m-1\right)x-y=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}mx+\left(m-1\right)x=3+7\\mx+y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(2m-1\right)=10\\mx+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=3-mx=3-\dfrac{10m}{2m-1}=\dfrac{6m-3-10m}{2m-1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=\dfrac{-4m-3}{2m-1}\end{matrix}\right.\)
Để x và y trái dấu thì x*y<0
=>\(\dfrac{10}{2m-1}\cdot\dfrac{-4m-3}{2m-1}< 0\)
=>\(\dfrac{10\left(4m+3\right)}{\left(2m-1\right)^2}>0\)
=>4m+3>0
=>m>-3/4
Kết hợp (1), ta được: \(\left\{{}\begin{matrix}m>-\dfrac{3}{4}\\m\notin\left\{\dfrac{1}{2};1\right\}\end{matrix}\right.\)
2: Để x,y là số nguyên thì \(\left\{{}\begin{matrix}10⋮2m-1\\-4m-3⋮2m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\\-4m+2-5⋮2m-1\end{matrix}\right.\)
=>\(2m-1\in\left\{1;-1;5;-5\right\}\)
=>\(2m\in\left\{2;0;6;-4\right\}\)
=>\(m\in\left\{1;0;3;-2\right\}\)
Kết hợp (1), ta được: \(m\in\left\{0;3;-2\right\}\)