Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(e,\left\{{}\begin{matrix}\left(\frac{x}{y}\right)^3+\left(\frac{x}{y}\right)^2=12\\\left(xy\right)^2+xy=6\end{matrix}\right.\left(x;y\ne0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy\in\left\{2;-3\right\}\end{matrix}\right.\)
Vì \(\frac{x}{y}=2>0\Rightarrow xy>0\Rightarrow xy=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y\\2y^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\left(h\right)\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
\(a,\left\{{}\begin{matrix}x^2+\frac{1}{y^2}+\frac{x}{y}=3\\x+\frac{1}{y}+\frac{x}{y}=3\end{matrix}\right.\left(x;y\ne0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\frac{1}{y}\right)^2-\frac{x}{y}=3\\\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+\frac{1}{y}=a\\\frac{x}{y}=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2-b=3\\a+b=3\end{matrix}\right.\)
Làm nốt nha
a) \(\left\{{}\begin{matrix}x+2y=-1\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y=-6\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\)
Vậy..............................................................................
b) \(\left\{{}\begin{matrix}\frac{5}{x}-\frac{6}{y}=3\\\frac{4}{x}+\frac{9}{y}=7\end{matrix}\right.\)ĐKXĐ: x,y≠0
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{20}{x}-\frac{24}{y}=12\\\frac{20}{x}+\frac{45}{y}=35\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\frac{69}{y}=23\\\frac{20}{x}+\frac{45}{y}=35\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=10\end{matrix}\right.\)
Vậy...................................................................................
c) \(\left\{{}\begin{matrix}3\sqrt{x+1}+\sqrt{y-1}=1\\\sqrt{x+1}-\sqrt{y-1}=-2\end{matrix}\right.\)ĐKXĐ:\(\left\{{}\begin{matrix}x\ge-1\\y\ge1\end{matrix}\right.\)
\(\Rightarrow4\sqrt{x+1}\)\(=-1\)(vô nghiệm)
Vậy hệ pt vô nghiệm
d) Nhân 3 pt đầu rồi thu gọn
a/ \(\left\{{}\begin{matrix}\left(x^2+x\right)+\left(y^2+y\right)=18\\\left(x^2+x\right)\left(y^2+y\right)=72\end{matrix}\right.\)
Theo Viet đảo, \(x^2+x\) và \(y^2+y\) là nghiệm của:
\(t^2-18t+72=0\Rightarrow\left[{}\begin{matrix}t=12\\t=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=6\\y^2+y=12\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=12\\y^2+y=6\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\left\{2;-3\right\}\\y=\left\{3;-4\right\}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\left\{3;-4\right\}\\y=\left\{2;-3\right\}\end{matrix}\right.\end{matrix}\right.\)
b/ ĐKXĐ: ...
\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\x=\frac{3y-1}{y}\end{matrix}\right.\)
Nhận thấy \(y=\frac{1}{3}\) không phải nghiệm
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\\frac{1}{x}=\frac{y}{3y-1}\end{matrix}\right.\) \(\Rightarrow\frac{y}{3y-1}+\frac{1}{y+1}=1\)
\(\Leftrightarrow y\left(y+1\right)+3y-1=\left(3y-1\right)\left(y+1\right)\)
\(\Leftrightarrow y^2-y=0\Rightarrow\left[{}\begin{matrix}y=0\left(l\right)\\y=1\end{matrix}\right.\) \(\Rightarrow x=2\)
a/ Bạn tự giải
b/ ĐKXĐ:...
Cộng vế với vế: \(\frac{x-y}{y+12}=3\Rightarrow x-y=3y+36\Rightarrow x=4y+36\)
Thay vào pt đầu: \(\frac{4y+36}{y}-\frac{y}{y+12}=1\)
Đặt \(\frac{y+12}{y}=a\Rightarrow4a-\frac{1}{a}=1\Rightarrow4a^2-a-1=0\)
\(\Rightarrow a=\frac{1\pm\sqrt{17}}{8}\) \(\Rightarrow\frac{y+12}{y}=\frac{1\pm\sqrt{17}}{8}\)
\(\Rightarrow\left[{}\begin{matrix}y+12=y\left(\frac{1+\sqrt{17}}{8}\right)\\y+12=y\left(\frac{1-\sqrt{17}}{8}\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(\frac{-7+\sqrt{17}}{8}\right)y=12\\\left(\frac{-7-\sqrt{17}}{8}\right)y=12\end{matrix}\right.\) \(\Rightarrow y=...\)
Chắc bạn ghi sai đề, nghiệm quá xấu
3/ \(\Leftrightarrow\left\{{}\begin{matrix}3x^2+y^2=5\\3x^2-9y=3\end{matrix}\right.\) \(\Rightarrow y^2+9y=2\Rightarrow y^2+9y-2=0\Rightarrow y=...\)
4/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{3x-1}-3\sqrt{2y+1}=3\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)
\(\Rightarrow5\sqrt{3x-1}=15\Rightarrow\sqrt{3x-1}=3\Rightarrow x=\frac{10}{3}\)
\(\sqrt{2y+1}=\sqrt{3x-1}-1=3-1=2\Rightarrow2y+1=4\Rightarrow y=\frac{3}{2}\)
\(\Rightarrow\left|a\right|\le1\),\(\left|b\right|\le1\),\(\left|c\right|\le1\)
\(\Rightarrow1-a\ge0\)tương tự 1-b,1-c............
\(\Rightarrow\left(1\right)\ge0\)
dấu = khi a=1b=0c=0 và hoán vị
a) Đặt \(\left\{{}\begin{matrix}\frac{1}{x-1}=a\\\frac{1}{y-1}=b\end{matrix}\right.\)
\(hpt\Leftrightarrow\left\{{}\begin{matrix}5a+b=10\\a-3b=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15a+3b=30\\a-3b=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-3b=18\\16a=48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{x-1}=3\\\frac{1}{y-1}=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{4}{3}\\y=\frac{4}{5}\end{matrix}\right.\)
Vậy...
b) Đặt \(\left\{{}\begin{matrix}\frac{1}{\sqrt{x-7}}=a\\\frac{1}{\sqrt{y+6}}=b\end{matrix}\right.\)
\(hpt\Leftrightarrow\left\{{}\begin{matrix}7a-4b=\frac{5}{2}\\5a+3b=\frac{13}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}31a-12b=\frac{15}{2}\\20a+12b=\frac{26}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7a-4b=\frac{5}{2}\\51a=\frac{97}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{97}{306}\\b=\frac{-43}{612}\end{matrix}\right.\)( loại vì \(a,b>0\) )
Vậy hệ vô nghiệm
Is that true .-.
Cho xin solve lại câu b)
hpt \(\Leftrightarrow\left\{{}\begin{matrix}21a-12b=\frac{15}{2}\\20a+12b=\frac{26}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5a+3b=\frac{13}{6}\\41a=\frac{97}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{97}{246}\\b=\frac{8}{123}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{\sqrt{x-7}}=\frac{97}{246}\\\frac{1}{\sqrt{y+6}}=\frac{8}{123}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{126379}{9409}\\y=\frac{14745}{64}\end{matrix}\right.\)
Vậy...
Đặt: \(\left\{{}\begin{matrix}a=\sqrt{x}+1\\b=x+y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{a}-\frac{1-b}{b}=\frac{22}{15}\\\frac{3}{a}+\frac{5+b}{b}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{a}-\frac{1}{b}+1=\frac{22}{15}\\\frac{3}{a}+\frac{5}{b}+1=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{a}-\frac{1}{b}=\frac{7}{15}\\\frac{3}{a}+\frac{5}{b}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{6}{a}-\frac{3}{b}=\frac{7}{5}\\\frac{6}{a}+\frac{10}{b}=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{6}{a}-\frac{3}{b}=\frac{7}{5}\\\frac{13}{b}=\frac{13}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3=\sqrt{x}+1\\5=x+y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=2\\x+y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5-x=1\end{matrix}\right.\)
Vậy pt có \(n_0\) \(S=\left\{4;1\right\}\)