\(\left\{{}\begin{matrix}2^x+4^y=32\\xy=8\end{matrix}\right.\). Thấy
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2017

chẳng hiểu

Nguyễn Huy Thắng chuyện gì thế (xem hộ hả)

?

(1) không phải thấy x,y >0 mà phải lập luận x,y>0 ;

hoặc ít nhất phải ghi dẽ dàng c/m được x,y <=0 vô nghiệm => x,y >0

11 tháng 9 2017

\(x;y=0\) nhỏ hơn 0

\(x=y=-1\) <2

\(x,y<-2\) thì \(2^x;4^y\) là phân số <32

x,y càng lớn thì \(2^x;4^y\) là phân số càng bé <32

14 tháng 12 2017

<br class="Apple-interchange-newline"><div id="inner-editor"></div>x>2;y>1

Khi đó Pt 36√x−2 +4√x−2+4√y−1 +√y−1=28

theo BĐT Cô si ta có 36√x−2 +4√x−2≥2.√36√x−2 .4√x−2=24

                                  và 4√y−1 +√y−1≥2√4√y−1 .√y−1=4

Pt đã cho có VT>= 28 Dấu "=" xảy ra 

36√x−2 =4√x−2⇔x=11

và 4√y−1 =√y−1⇔y=5

Đối chiếu với ĐK thì x=11; y=5 là nghiệm của PT

30 tháng 3 2019

3.

30 tháng 3 2019

ấn nhầm =)

1 tháng 1 2018

1. Đề này là 18 chứ không phải 15 nhé

\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+x+\sqrt{y^2+x+y+1}+y=18\left(1\right)\\\sqrt{x^2+x+y+1}-x+\sqrt{y^2+x+y+1}-y=2\left(2\right)\end{matrix}\right.\)

Lấy (1) + (2) và (1) - (2) ta được hệ mới

\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+\sqrt{y^2+x+y+1}=10\\x+y=8\end{matrix}\right.\)

\(\Rightarrow x=8-y\)

\(\Rightarrow\sqrt{x^2+9}+\sqrt{y^2+9}=10\)\(\Leftrightarrow\sqrt{x^2+9}=10-\sqrt{y^2+9}\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\x^2+9=100-20\sqrt{y^2+9}+y^2+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\x^2=100-20\sqrt{y^2+9}+y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\\left(8-y\right)^2=100-20\sqrt{y^2+9}+y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\9y^2-72y+144=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)

1 tháng 1 2018

2. Dễ thấy x = y = 0 không phải là nghiệm của phương trình

HPT\(\Leftrightarrow\left\{{}\begin{matrix}1-\dfrac{12}{y+3x}=\dfrac{2}{\sqrt{x}}\left(1\right)\\1+\dfrac{12}{y+3x}=\dfrac{6}{\sqrt{y}}\left(2\right)\end{matrix}\right.\)

Lấy (1) + (2) ; (1) - (2) ta được

\(\left\{{}\begin{matrix}1=\dfrac{1}{\sqrt{x}}+\dfrac{3}{\sqrt{y}}\left(3\right)\\\dfrac{12}{y+3x}=\dfrac{3}{\sqrt{y}}-\dfrac{1}{\sqrt{x}}\left(4\right)\end{matrix}\right.\)

Lấy ( 3) nhân (4)

\(\dfrac{12}{y+3x}=\dfrac{9}{y}-\dfrac{1}{x}=\dfrac{9x-y}{xy}\)

\(\Leftrightarrow27x^2-6xy-y^2=0\Leftrightarrow\left(9x+y\right)\left(3x-y\right)=0\)

\(\Rightarrow y=3x\)

đến đây thì dễ rồi

NV
30 tháng 5 2020

b/

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4-y^2\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=4\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)

\(\Rightarrow2x^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)

\(\Leftrightarrow2x^3=x^3+y^3\)

\(\Leftrightarrow x^3=y^3\Rightarrow x=y\)

Thay vào pt đầu:

\(2x^2=4\Rightarrow x^2=2\Rightarrow x=y=\pm\sqrt{2}\)

NV
30 tháng 5 2020

a/

\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(2x+y\right)+x\left(2x+y\right)=-6\\x^2+x+2x+y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+x\right)\left(2x+y\right)=-6\\x^2+x+2x+y=1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2+x=a\\2x+y=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}ab=-6\\a+b=1\end{matrix}\right.\) với

Theo Viet đảo, a và b là nghiệm của:

\(t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=3\\2x+y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=-2\left(vn\right)\\2x+y=3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x-3=0\\y=-2x-2\end{matrix}\right.\) (bấm casio)