Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Đặt \(u=\sqrt{1-x}\); \(v=\sqrt{1+x}\)
phương trình trở thành
\(2u-v+3uv=u^2+2\)\(\Rightarrow u^2-2u+v-3uv+2=0\)
lại có \(u^2+v^2=2\)
\(\Rightarrow u^2-2u-3uv+v+u^2+v^2=0\)
\(\Rightarrow\left(u-v-1\right)\left(2u-v\right)=0\)
đến đây thì easy rồi
a)
Đặt \(\sqrt{2x+1}=t\) ;\(\sqrt{x}=k\)
Phương trình trở thành
\(\left(3k^2+t^2\right)t-\left(3t^2+k^2\right)k-1=0\)
\(\Leftrightarrow3k^2t+t^3-3t^2k-k^3-1=0\)
\(\Leftrightarrow\left(t-k\right)\left(t^2+kt+k^2\right)-3tk\left(t-k\right)-1=0\)
\(\Leftrightarrow\left(t-k\right)^3-1=0\)
\(\Leftrightarrow\left(t-k-1\right)\left(\left(t-k\right)^2+t-k+1\right)=0\)
do t > k => t - k > 0
\(\Rightarrow\left(t-k\right)^2+t-k+1>0\)
\(\Rightarrow t-k-1=0\)
\(\Leftrightarrow t=1+k\)\(\Leftrightarrow\sqrt{2x+1}=1+\sqrt{x}\)
\(\Leftrightarrow2x+1=x+2\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
END
a,|2x-3|=x-5
th1:2x-3=x-5
➜ x=-2
th2:2x-3=5-x
➜ 3x=8
➜x 8/3
bạn giải giúp mình mấy câu còn lại với , mình sẽ tick cho
Điều kiện \(x\ge0\) khi đó phương trình đã cho :
\(\Leftrightarrow\left[\left(2x+1\right)+3x\right]\sqrt{2x+1}-\left[3\left(2x+1\right)+x\right]\sqrt{x}=1\) (a)
Đặt \(u=\sqrt{2x+1};v=\sqrt{x}\) thay vào (2) ta được :
\(\left(u^2+3v^2\right)u-\left(3u^2+v^2\right)v=1\)
\(\Leftrightarrow u^3-3u^2v+3uv^2-v^3=1\)
\(\Leftrightarrow\left(u-v\right)^3=1\)
\(\Leftrightarrow u-v=1\)
\(\Leftrightarrow u=v+1\)
Vậy :
\(\sqrt{2x+1}=\sqrt{x}+1\)
\(\Leftrightarrow2x+1=x+2\sqrt{x}+1\)
\(\Leftrightarrow2\sqrt{x}=x\)
\(\Leftrightarrow4x=x^2\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=4\end{array}\right.\) (Thỏa mãn điều kiện)
Đáp số : \(x=0;x=4\)
a: ĐKXĐ: \(\left(2x^2-5x+2\right)\left(x^3+1\right)< >0\)
=>(2x-1)(x-2)(x+1)<>0
hay \(x\notin\left\{\dfrac{1}{2};2;-1\right\}\)
b: ĐKXĐ: x+5<>0
=>x<>-5
c: ĐKXĐ: x4-1<>0
hay \(x\notin\left\{1;-1\right\}\)
d: ĐKXĐ: \(x^4+2x^2-3< >0\)
=>\(x\notin\left\{1;-1\right\}\)
a/ ĐKXĐ: ...
\(\Leftrightarrow\left(x^2-6x\right)\left(\sqrt{17-x^2}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x=0\\\sqrt{17-x^2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\left(x-6\right)=0\\x^2=16\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\left(l\right)\\x=4\\x=-4\end{matrix}\right.\)
b/ĐKXĐ: \(x\ge-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x+4=0\\\sqrt{x+3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\left(l\right)\\x=-3\end{matrix}\right.\)
c/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ge1\\x\le1\end{matrix}\right.\) \(\Rightarrow x=1\)
Thay \(x=1\) vào pt thấy ko thỏa mãn
Vậy pt vô nghiệm
d/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+3=0\\\sqrt{x-2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\left(l\right)\\x=2\end{matrix}\right.\)
8.
ĐKXĐ: \(x\ge\frac{2}{3}\)
\(\Leftrightarrow\frac{9\left(x+3\right)}{\sqrt{4x+1}+\sqrt{3x-2}}=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(l\right)\\\frac{9}{\sqrt{4x+1}+\sqrt{3x-2}}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{4x+1}+\sqrt{3x-2}=9\)
\(\Leftrightarrow\sqrt{4x+1}-5+\sqrt{3x-2}-4=0\)
\(\Leftrightarrow\frac{4\left(x-6\right)}{\sqrt{4x+1}+5}+\frac{3\left(x-6\right)}{\sqrt{3x-2}+4}=0\)
\(\Leftrightarrow\left(x-6\right)\left(\frac{4}{\sqrt{4x+1}+5}+\frac{3}{\sqrt{3x-2}+4}\right)=0\)
\(\Leftrightarrow x=6\)
6.
ĐKXD: ...
\(\Leftrightarrow2\left(x^2-6x+9\right)+\left(x+5-4\sqrt{x+1}\right)=0\)
\(\Leftrightarrow2\left(x-3\right)^2+\frac{\left(x-3\right)^2}{x+5+4\sqrt{x+1}}=0\)
\(\Leftrightarrow\left(x-3\right)^2\left(2+\frac{1}{x+5+4\sqrt{x+1}}\right)=0\)
\(\Leftrightarrow x=3\)
7.
\(\sqrt{x-\frac{1}{x}}-\sqrt{2x-\frac{5}{x}}+\frac{4}{x}-x=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-\frac{1}{x}}=a\ge0\\\sqrt{2x-\frac{5}{x}}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=\frac{4}{x}-x\)
\(\Rightarrow a-b+a^2-b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)
\(\Leftrightarrow a=b\Leftrightarrow x-\frac{1}{x}=2x-\frac{5}{x}\)
\(\Leftrightarrow x=\frac{4}{x}\Rightarrow x=\pm2\)
Thế nghiệm lại pt ban đầu để thử (hoặc là bạn tìm ĐKXĐ từ đầu)