\(\left(3x-5\right)^6=\left(3x-5\right)^4\)

ai nhanh mình tick

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(3x-5)6-(3x-5)4=0

<=> (3x-5)4 [(3x-5)2-1]=0

<=> \(\orbr{\begin{cases}3x-5=0\\3x-5=\pm1\end{cases}}\)

<=>\(\orbr{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}\)hoặc x=\(\frac{4}{3}\)

DD
22 tháng 7 2021

d) \(\left|x-1\right|+\left|x-5\right|+\left|2x+5\right|\)

\(=\left|1-x\right|+\left|5-x\right|+\left|2x+5\right|\)

\(\ge\left|1-x+5-x\right|+\left|2x+5\right|\)

\(\ge\left|6-2x+2x+5\right|=11\)

Dấu \(=\)khi \(\hept{\begin{cases}\left(1-x\right)\left(5-x\right)\ge0\\\left(6-2x\right)\left(2x+5\right)\ge0\end{cases}}\Leftrightarrow-\frac{5}{2}\le x\le1\).

e) \(\left|x+2\right|+\left|x-1\right|+\left|x-4\right|+\left|x+5\right|=12\)

\(\Leftrightarrow\left|x+2\right|+\left|1-x\right|+\left|4-x\right|+\left|x+5\right|=12\)

Có \(\left|x+2\right|+\left|1-x\right|+\left|4-x\right|+\left|x+5\right|\ge\left|x+2+1-x\right|+\left|4-x+x+5\right|=3+9=12\)

Dấu \(=\)khi \(\hept{\begin{cases}\left(x+2\right)\left(1-x\right)\ge0\\\left(4-x\right)\left(x+5\right)\ge0\end{cases}}\Leftrightarrow-2\le x\le1\).

f) \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|3x-10\right|\)

\(\ge\left|x-1+x-2\right|+\left|3-x+3x-10\right|\)

\(=\left|2x-3\right|+\left|2x-7\right|\)

\(\ge\left|2x-3+7-2x\right|=4\)

Dấu \(=\)khi \(\hept{\begin{cases}\left(x-1\right)\left(x-2\right)\ge0\\\left(3-x\right)\left(3x-10\right)\ge0\\\left(2x-3\right)\left(7-2x\right)\ge0\end{cases}}\Leftrightarrow3\le x\le\frac{10}{3}\).

11 tháng 6 2018

Làm tiếp nè :

2) / 2x + 4/ = 2x - 5

Do : / 2x + 4 / ≥ 0 ∀x

⇒ 2x - 5 ≥ 0

⇔ x ≥ \(\dfrac{5}{2}\)

Bình phương hai vế của phương trình , ta có :

( 2x + 4)2 = ( 2x - 5)2

⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0

⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0

⇔ 9( 4x - 1) = 0

⇔ x = \(\dfrac{1}{4}\) ( KTM)

Vậy , phương trình vô nghiệm .

3) / x + 3/ = 3x - 1

Do : / x + 3 / ≥ 0 ∀x

⇒ 3x - 1 ≥ 0

⇔ x ≥ \(\dfrac{1}{3}\)

Bình phương hai vế của phương trình , ta có :

( x + 3)2 = ( 3x - 1)2

⇔ ( x + 3)2 - ( 3x - 1)2 = 0

⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0

⇔ ( 4 - 2x)( 4x + 2) = 0

⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)

KL......

4) / x - 4/ + 3x = 5

⇔ / x - 4/ = 5 - 3x

Do : / x - 4/ ≥ 0 ∀x

⇒ 5 - 3x ≥ 0

⇔ x ≤ \(\dfrac{-5}{3}\)

Bình phương cả hai vế của phương trình , ta có :

( x - 4)2 = ( 5 - 3x)2

⇔ ( x - 4)2 - ( 5 - 3x)2 = 0

⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0

⇔ ( 4x - 9)( 1 - 2x) = 0

⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)

KL......


Làm tương tự với các phần khác nha

11 tháng 6 2018

1)\(\left|4x\right|=3x+12\)

\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)

\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)

\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)

Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)

23 tháng 10 2020

1) \(\left|x+y-\frac{1}{4}\right|^2+\left|x-y+\frac{1}{5}\right|=0\)

Ta có : \(\hept{\begin{cases}\left|x+y-\frac{1}{4}\right|^2\ge0\\\left|x-y+\frac{1}{5}\right|\ge0\end{cases}}\Leftrightarrow\left|x+y-\frac{1}{4}\right|^2+\left|x-y+\frac{1}{5}\right|\ge0\)

Mà \(\left|x+y-\frac{1}{4}\right|^2+\left|x-y+\frac{1}{5}\right|=0\)

\(\Rightarrow\hept{\begin{cases}\left|x+y-\frac{1}{4}\right|^2=0\\\left|x-y+\frac{1}{5}\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=\frac{1}{4}\\x-y=-\frac{1}{5}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}-y\\\frac{1}{4}-y-y=\frac{-1}{5}\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}-y\\-2y=-\frac{9}{20}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}-\frac{9}{40}=\frac{1}{40}\\y=\frac{9}{40}\end{cases}}}\)

Vậy .........

2) \(\left|3x+8\right|-2x=5\)

\(\Leftrightarrow\left|3x+8\right|=2x+5\)( 1 )

Ta có : \(\left|3x+8\right|=\orbr{\begin{cases}3x+8\forall x\ge-\frac{8}{3}\\-3x-8\forall x< \frac{-8}{3}\end{cases}}\)

Để giải phương trình ( 1 ) ta quy về giải 2 phương trình sau :

+) \(3x+8=2x+5\) với \(x\ge\frac{-8}{3}\)

\(\Leftrightarrow3x-2x=5-8\)

\(\Leftrightarrow x=-3\left(KTM\right)\)

+) \(-3x-8=2x+5\)với \(x< \frac{-8}{3}\)

\(\Leftrightarrow-5x=13\Leftrightarrow x=\frac{-13}{5}\left(KTM\right)\)

Vậy phương trình vô nghiệm 

c) \(\left|x-2\right|+\left|x+3\right|=6\)

+) với \(x\ge2\)

\(x-2+x+3=6\)

\(\Leftrightarrow2x+1=6\)

\(\Leftrightarrow x=\frac{5}{2}\left(tm\right)\)

+) Với x< -3 

\(2-x-x-3=6\)

\(\Leftrightarrow-2x-1=6\)

\(\Leftrightarrow-2x=7\Leftrightarrow x=\frac{-7}{2}\left(tm\right)\)

Vậy .........

15 tháng 3 2018

Mấy câu này dễ mà,động não lên chứ bạn:v

Link______________Link

h) \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\)

\(\ge\left|x-1+3-x\right|=2\)

\(\Rightarrow x+1>2\Leftrightarrow x>1\)

Vậy: \(\left\{{}\begin{matrix}x>1\\x\in R\end{matrix}\right.\)

Câu b xét khoảng tương tự với cái link t đưa thôi

hơi bức xúc rồi đó

tau chỉ muốn kiểm tra lại thôi

13 tháng 9 2017

a) \(\left(\frac{2}{5}+\frac{3}{4}\right)^2=\left(\frac{8}{20}+\frac{15}{20}\right)^2=\left(\frac{23}{20}\right)^2=\frac{23^2}{20^2}=\frac{529}{400}\)

b) \(\left(\frac{5}{4}-\frac{1}{6}\right)^2=\left(\frac{15}{12}-\frac{2}{12}\right)^2=\left(\frac{13}{12}\right)^2=\frac{13^2}{12^2}=\frac{169}{144}\)

olm-logo.png

13 tháng 9 2017

ngu thế hả bạn

12 tháng 10 2020

a) \(\left|\frac{1}{3}x-8\right|+3=15\)

\(\Leftrightarrow\left|\frac{1}{3}x-8\right|=12\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}x-8=-12\\\frac{1}{3}x-8=12\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}x=-4\\\frac{1}{3}x=20\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-12\\x=60\end{cases}}\)

Vậy \(x\in\left\{-12;60\right\}\)

b) \(15-\left|2+3x\right|=8\)

\(\Leftrightarrow\left|2+3x\right|=7\)

\(\Leftrightarrow\orbr{\begin{cases}2+3x=-7\\2+3x=7\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=-9\\3x=5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=\frac{5}{3}\end{cases}}\)

Vậy \(x\in\left\{-3;\frac{5}{3}\right\}\)

d) \(-1\frac{1}{6}-\left|5-3x\right|=\frac{2}{3}\)

\(\Leftrightarrow\frac{-7}{6}-\left|5-3x\right|=\frac{2}{3}\)

\(\Leftrightarrow\left|5-3x\right|=\frac{-7}{6}-\frac{2}{3}\)

\(\Leftrightarrow\left|5-3x\right|=\frac{-11}{6}\)

Vì \(\left|5-3x\right|\ge0\forall x\)

mà \(\frac{-11}{6}< 0\)\(\Rightarrow\)Vô lý 

Vậy \(x\in\varnothing\)

12 tháng 10 2020

e) \(\left(\frac{3}{7}\right)^{20}:\left(\frac{9}{49}\right)^6=\left(\frac{3}{7}\right)^{20}:\left[\left(\frac{3}{7}\right)^2\right]^6=\left(\frac{3}{7}\right)^{20}:\left(\frac{3}{7}\right)^{2.6}\)

\(=\left(\frac{3}{7}\right)^{20}:\left(\frac{3}{7}\right)^{12}=\left(\frac{3}{7}\right)^8\)

g) \(4.2^5:\left(2^3.1^{16}\right)=2^2.2^5:2^3=2^4=16\)

a)Ta có :\(\left|x+6\right|+\left|4-x\right|\ge\left|x+6+4-x\right|=\left|10\right|=10\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+6\right)\left(4-x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x+6\ge0\\4-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x+6\le0\\4-x\le0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge-6\\x\le4\end{cases}}\)hoặc \(\hept{\begin{cases}x\le-6\\x\ge4\end{cases}}\)(Vô lí)

\(\Leftrightarrow-6\le x\le4\)

Vậy \(-6\le x\le4\)

b)Ta có :\(\left|x-1\right|+\left|x-4\right|=\left|x-1\right|+\left|4-x\right|\ge\left|x-1+4-x\right|=\left|3\right|=3\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)\left(x-4\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\x-4\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1\le0\\x-4\le0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge4\end{cases}}\)hoặc \(\hept{\begin{cases}x\le1\\x\le4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\ge4\\x\le1\end{cases}}\)

Vậy \(\orbr{\begin{cases}x\ge4\\x\le1\end{cases}}\)