\(\left(2x+1\right)^4=\left(2x+1\right)^6\)

giúp tui với

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2018

\(\left(2x+1\right)^4=\left(2x+1\right)^6\)

Đặt 2x + 1 = a, ta có

\(a^4=a^6\)

\(\Rightarrow a^4-a^6=0\)

\(\Rightarrow a^4\left(1-a^2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a^4=0\\1-a^2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=0\\a^2=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\2x+1=1\\2x+1=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=-1\\2x=0\\2x=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=0\\x=-1\end{matrix}\right.\)

30 tháng 8 2018

\(\left(2x+1\right)^4=\left(2x+1\right)^6\)

\(\Rightarrow\left(2x+1\right)^4-\left(2x+1\right)^6=0\)

\(\Rightarrow\left(2x+1\right)^4.\left[\left(2x+1\right)^2-1\right]0\)

\(\Rightarrow\left[{}\begin{matrix}\left(2x+1\right)^4=0\\\left[\left(2x+1\right)^2-1\right]=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x+1=0\\\left(2x+1\right)^2=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=0\end{matrix}\right.\)

\(\Rightarrow\left\{x_1=\dfrac{-1}{2};x_2=0\right\}\)

3 tháng 9 2019

a. \(5^{4-x}+1=26\)

\(\Leftrightarrow5^{4-x}=26-1=25\)

\(\Leftrightarrow5^{4-x}=5^2\)

\(\Leftrightarrow4-x=2\)

\(\Leftrightarrow x=2\)

b. \(\left(\frac{2}{x}+1\right)^{2x}=5^{2x}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{2}{x}+1=5\\\frac{2}{x}+1=-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{2}{x}=4\\\frac{2}{x}=-6\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{3}\end{cases}}\)

c. \(\left(1-2x\right)^4-\left(1-2x\right)^6=0\)

\(\Leftrightarrow\left(1-2x\right)^4.\left[1-\left(1-2x\right)^2\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(1-2x\right)^4=0\\1-\left(1-2x\right)^2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}1-2x=0\\\left(1-2x\right)^2=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=1\\2x=0hoac2x=-2\end{cases}}\)

\(\Leftrightarrow x=\frac{1}{2},x=0,x=-1\)

1: Trường hợp 1: x>=0

Pt trở thành x+x=2

hay x=1(nhận)

Trường hợp 2: x<0

Pt trở thành -x+x=2

=>0x=2(loại)

2: Trường hợp 1: x>=1

Pt trở thành x-1+x=2

=>2x=3

hay x=3/2(nhận)

Trường hợp 2: x<1

Pt trở thành 1-x+x=2

=>1=2(loại)

 

20 tháng 7 2016

a/ (x - 1)6 = (x - 1)8

=> (x - 1)6 [1 - (x - 1)2] = 0

=> (x - 1)6 (1 - x2 + 2x - 1) = 0

=> (x - 1)6 (-x2 + 2x) = 0

=> x - 1 = 0 => x = 1

hoặc - x2 + 2x = 0 => x = 0 hoặc x = 2

                               Vậy x = 0, x = 1, x = 2

19 tháng 3 2020

a, Ta có : \(\left(2x-1\right)^4=16\)

=> \(\left(\left(2x-1\right)^2\right)^2-\left(2^2\right)^2=0\)

=> \(\left(\left(2x-1\right)^2-2^2\right)\left(\left(2x-1\right)^2+2^2\right)=0\)

=> \(\left(2x-1-2\right)\left(2x-1+2\right)\left(\left(2x-1\right)^2+2^2\right)=0\)

\(\left(2x-1\right)^2+2^2>0\)

=> \(\left(2x-3\right)\left(2x+1\right)=0\)

=> \(\left[{}\begin{matrix}x=\frac{3}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{\frac{3}{2};-\frac{1}{2}\right\}\)

b, Ta có : \(\left(2x+1\right)^4=\left(2x+1\right)^6\)

=> \(\left(2x+1\right)^6-\left(2x+1\right)^4=0\)

=> \(\left(2x+1\right)^4\left(\left(2x+1\right)^2-1\right)=0\)

=> \(\left(2x+1\right)^4\left(2x+1-1\right)\left(2x+1+1\right)=0\)

=> \(2x\left(2x+1\right)^4\left(2x+2\right)=0\)

=> \(\left[{}\begin{matrix}2x=0\\2x+1=0\\2x+2=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=0\\x=-\frac{1}{2}\\x=-1\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{0;-1;-\frac{1}{2}\right\}\)

c, Ta có : \(\left|\left|x+3\right|-8\right|=20\)

TH1 : \(x+3\ge0\left(x\ge-3\right)\)

=> \(\left|x+3\right|=x+3\)

=> \(\left|x-5\right|=20\)

TH1.1 : \(x-5\ge0\left(x\ge5\right)\)

=> \(\left|x-5\right|=x-5=20\)

=> \(x=25\left(TM\right)\)

TH1.2 : \(x-5< 0\left(x< 5\right)\)

=> \(\left|x-5\right|=5-x=20\)

=> \(x=-15\) ( không thỏa mãn )

TH2 : \(x+3< 0\left(x< -3\right)\)

=> \(\left|x+3\right|=-x-3\)

=> \(\left|-x-11\right|=20\)

TH1.1 : \(-x-11\ge0\left(x\le-11\right)\)

=> \(\left|-x-11\right|=-x-11=20\)

=> \(x=-31\left(TM\right)\)

TH1.2 : \(-x-11< 0\left(x>-11\right)\)

=> \(\left|-x-11\right|=x+11=20\)

=> \(x=9\) ( không thỏa mãn )

Vậy phương trình có tập nghiệm là \(S=\left\{-31;25\right\}\)

19 tháng 3 2020

a, ( 2x - 1 )4 = 16

=> 2x - 1 = 2 hoặc -2

TH1: 2x - 1 = 2

=> 2x = 2 + 1 = 3; => x = \(\frac{3}{2}\)

TH2: 2x - 1 = -2

=> 2x = -2 + 1 = -1; => x =- \(\frac{1}{2}\)

b, ( 2x + 1 )4 = ( 2x + 1 )6

=> ( 2x + 1 )4 - ( 2x + 1 )6 = 0

= ( 2x + 1 )4 - ( 2x - 1 )2 . ( 2x - 1 )4

= ( 2x + 1 )4 . [ 1 - ( 2x - 1 )2 ] = 0

Ta có ( 2x + 1 )4 và ( 2x - 1 )2 \(\ge\) 0 vì có số mũ chẵn

Ta có 2 TH

TH1: ( 2x - 1 )4 = 0

=> 2x - 1 = 0; => x = \(\frac{1}{2}\)

TH2: 1 - ( 2x - 1 )2 = 0; => ( 2x - 1 )2 = 1

=> 2x - 1 = 1; => x = 1

c, //x + 3/ - 8/ = 20

Ta có 2 TH, mỗi TH lại chia thành 2 TH nhỏ hơn

TH1: /x + 3/ - 8 = 20

=> /x + 3/ = 28

=> x + 3 = 28 hoặc -28

TH1 nhỏ: x + 3 = 28; => x = 25

TH2 nhỏ: x + 3 = -28; => x = -31

TH2: /x + 3/ - 8 = -20

=> /x + 3/ = -12; => TH này loại

=> x = 25; -31

23 tháng 9 2017

x=0

ban

23 tháng 9 2017

a, (2x-3)4=(2x-3)6

=> (2x-3)6 : (2x-3)4=1

=> (2x-3)3=

=> 2x-3=1

=> 2x=4

=> x=2

b, (3x+5)3=(3x+5)2016

=> (3x+5)2016 : (3x+5)3=1

=> (3x+5)2013=1

=> 3x+5=1

=> 3x=-4

=> x=-4/3

c, (2x+1)2015=(2x+1)2017

=> (2x+1)2017 : (2x+1)2015=1

=> (2x+1)2=1

=> 2x+1=1

=> 2x=0

=> x=0

11 tháng 6 2018

Làm tiếp nè :

2) / 2x + 4/ = 2x - 5

Do : / 2x + 4 / ≥ 0 ∀x

⇒ 2x - 5 ≥ 0

⇔ x ≥ \(\dfrac{5}{2}\)

Bình phương hai vế của phương trình , ta có :

( 2x + 4)2 = ( 2x - 5)2

⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0

⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0

⇔ 9( 4x - 1) = 0

⇔ x = \(\dfrac{1}{4}\) ( KTM)

Vậy , phương trình vô nghiệm .

3) / x + 3/ = 3x - 1

Do : / x + 3 / ≥ 0 ∀x

⇒ 3x - 1 ≥ 0

⇔ x ≥ \(\dfrac{1}{3}\)

Bình phương hai vế của phương trình , ta có :

( x + 3)2 = ( 3x - 1)2

⇔ ( x + 3)2 - ( 3x - 1)2 = 0

⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0

⇔ ( 4 - 2x)( 4x + 2) = 0

⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)

KL......

4) / x - 4/ + 3x = 5

⇔ / x - 4/ = 5 - 3x

Do : / x - 4/ ≥ 0 ∀x

⇒ 5 - 3x ≥ 0

⇔ x ≤ \(\dfrac{-5}{3}\)

Bình phương cả hai vế của phương trình , ta có :

( x - 4)2 = ( 5 - 3x)2

⇔ ( x - 4)2 - ( 5 - 3x)2 = 0

⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0

⇔ ( 4x - 9)( 1 - 2x) = 0

⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)

KL......


Làm tương tự với các phần khác nha

11 tháng 6 2018

1)\(\left|4x\right|=3x+12\)

\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)

\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)

\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)

Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)