Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left|2-3x\right|< 7\)
\(\Leftrightarrow\left[{}\begin{matrix}2-3x< 7\\2-3x< -7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x< -2+7\\-3x< -2-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-3x< 5\\-3x< -9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{-5}{3}\\x< 3\end{matrix}\right.\)
S=...
b)\(\left|2x-3\right|\ge5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3\ge5\\2x-3\ge-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x\ge3+5\\2x\ge3-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x\ge8\\2x\ge-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\ge-1\end{matrix}\right.\)
S=...
c)\(8-4x\le0\)
\(\Leftrightarrow-4x\le-8+0\)
\(\Leftrightarrow-4x\le-8\)
\(\Leftrightarrow x\ge2\)
S=...
b)(2x - 1)^2 - (2x + 5) (2x - 5 ) = 18
4x 2 -4x+1-4x 2+25=18
26-4x=18
4x=8
x=2
a,27x-18=2x-3x^2
<=> 3x^2-2x+27-18x=0
<=> 3x^2-20x+27=0
\(\Delta\)= 20^2-4-12.27
tính \(\Delta\)rồi tìm x1 ,x2
1) (x - 2)2 - (x - 3)(x + 3) = 17
=> x2 - 4x + 4 - x2 + 9 = 17
=> -4x = 17 - 13
=> -4x = 4
=> x = -1
2) TTT
3) x2 + 6x - 147 = 0
=> x2 + 19x - 13x - 147 = 0
=> x(x + 19) - 13(x + 19) = 0
=> (x - 13)(x + 19) = 0
=> \(\orbr{\begin{cases}x-13=0\\x+19=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=13\\x=-19\end{cases}}\)
4) (3x - 5)(2x + 3) - 6x2 = 7
=> 6x2 + 9x - 10x - 15 - 6x2 = 7
=> -x - 15 = 7
=> -x = 7 + 15
=> -x = 22
=> x = -22
5) TL
5xy2(x - 3y) = 5x2y2 - 15xy3
(x+5)(x2-2x+3) = x3-2x2+3x +5x2-10x+15= x3+3x2-7x+15
(x + 2y)(x-y)= x2-xy+2xy-2y2= x2+xy-2y2
tk mình nha bạn
Khó thế giải hộ tao bài này với Trang ơi:
( x + 2) ( 1 + x - x2 + x3 - x4 ) - ( 1 - x ) 9 1 + x + x2 + x3 + x4 )
\(a,x^2\left(x-2x^3\right)\)
\(=x^3-2x^5\)
\(b,\left(x-2\right)\left(x-x^2+4\right)\)
\(=x^2-x^3+4x-2x+2x^2-8\)
\(=3x^2-x^3+2x-8\)
\(c,\left(x^2-1\right)\left(x^2+2x\right)\)
\(=x^4+2x^3-x^2-2x\)
\(d,\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)
\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)
\(=\left(6x^2+x-2\right)\left(3-x\right)\)
\(=18x^2+3x-6-6x^3-x^2+2x\)
\(=17x^2+5x-6-6x^3-x^2\)
\(e,\left(x+3\right)\left(x^2+3x-5\right)\)
\(=x^3+3x^2-5x+3x^2+9x-15\)
\(=x^3+6x^2+4x-15\)
\(f,\left(xy-2\right)\left(x^3-2x-6\right)\)
\(=x^4y-2x^2y-6xy-2x^3+4x-12\)
\(g,\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)\)
\(=20x^5-4x^4+8x^3-12x^2-5x^4+x^3-2x^2+3x+10x^3-2x^2+4x-6\)
\(=20x^5-9x^4+19x^3-16x^2+7x-6\)
a. x2(x−2x3)= x3-2x5
b. (x−2)(x−x2+4)= x2-x3+4x-2x+2x2-8= -x3+3x2+2x-8
c. (x2−1)(x2+2x)= x4+2x3-x2-2x
d. (2x−1)(3x+2)(3−x) = (6x2+x-2)(3-x)=18x2-6x3+3x-x2-6+2x =-6x3+17x2+5x-6
e. (x+3)(x2+3x−5)= x3+3x2-5x+3x2+9x-15= x3+6x2+4x-15
f. (xy−2)(x3−2x−6)= x4y-2x2y-6xy-2x3+4x+12
g. (5x3−x2+2x−3)(4x2−x+2)= 20x5-9x4+19x3-12x2+7x-6
\(b, (2x^2 + 3x-1) - 5(2x^2 + 3x + 2) + 24 =0 \)
Đặt \(2x^2 + 3x + 1 = a \)
\(=> (a-2) - 5(a+2) + 24 = 0\)\(\)
\(=> a - 2 - 5a - 10 + 24 = 0\)
\(=> a = 3=> 2x^2 + 3x + 1 = 3\)
\(<=> 2x^2 + 3x - 2 = 0\)
\(<=> 2x^2 + 4x - x - 2 = 0\)
\(<=> (2x-1)(x+2) = 0 \)
\(<=> 2x - 1 = 0 hoặc x+2 =0\)
\(<=> x = 1/2 hoặc x = -2\)
~~
a/ ĐKXĐ: x khác 1; x khác - 2
pt <=> \(\dfrac{x-1}{\left(x+2\right)\left(x-1\right)}-\dfrac{2\left(x+2\right)}{\left(x+2\right)\left(x-1\right)}=\dfrac{4x-8}{\left(x+2\right)\left(x-1\right)}\)
\(\Leftrightarrow x-1-2x-4=4x-8\Leftrightarrow-5x=-3\Leftrightarrow x=\dfrac{3}{5}\left(tm\right)\)
Vậy........
b/ \(2x-3\ge5\Leftrightarrow2x\ge8\Leftrightarrow x\ge4\)
Vậy......
c,d tt
a. \(\dfrac{1}{x+2}-\dfrac{2}{x-1}=\dfrac{4x-8}{\left(x+2\right)\left(x-1\right)}\)
ĐKXĐ: \(x\ne-2;x\ne1\)
\(\Leftrightarrow\dfrac{1\left(x-1\right)}{x+2\left(x-1\right)}-\dfrac{2\left(x+2\right)}{x-1\left(x+2\right)}=\dfrac{4x-8}{\left(x+2\right)\left(x-1\right)}\)
\(\Rightarrow1\left(x-1\right)-2\left(x+2\right)=4x-8\)
\(\Leftrightarrow x-1-2x-4=4x-8\)
\(\Leftrightarrow x-2x-4x=-8+1+4\)
\(\Leftrightarrow-5x=-3\)
\(\Leftrightarrow x=\dfrac{3}{5}\)
Vậy \(S=\left\{\dfrac{3}{5}\right\}\)
b) \(2x-3\ge5\left(2\right)\)
\(\Leftrightarrow2x\ge8\)
\(\Leftrightarrow x\ge4\)
Vậy tập nghiệm của BPT (2) là \(x\ge4\)
c) \(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{2x-6}{\left(x+1\right)\left(x-2\right)}\)
ĐKXĐ: \(x\ne2;x\ne-1\)
\(\Leftrightarrow\dfrac{2\left(x-2\right)}{x+1\left(x-2\right)}-\dfrac{1\left(x+1\right)}{x-2\left(x+1\right)}=\dfrac{2x-6}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow2x-3-1-x=2x-6\)
\(\Leftrightarrow2x-x-2x=-6+3+1\)
\(\Leftrightarrow x=2\) (KTM)
Vậy pt vô \(n_o\)
d) \(3x-5\ge7\left(4\right)\)
\(\Leftrightarrow3x\ge12\)
\(\Leftrightarrow x\ge4\)
Vậy tập nghiệm của BPT (4) là \(x\ge4\)
`|2x-3|>=5`
Bình phương hai vế ta có:
`(2x-3)^2>=25`
`<=>(2x-3)^2-25>=0`
`<=>(2x-3-5)(2x-3+5)>=0`
`<=>(2x-8)(2x+2)>=0`
`<=>(x-4)(x+1)>=0`
`<=>` \(\left[ \begin{array}{l}\begin{cases}x-4 \ge 0\\x+1 \ge 0\\\end{cases}\\\begin{cases}x-4 \le 0\\x+1 \le 0\\\end{cases}\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}\begin{cases}x \ge 4\\x \ge -1\\\end{cases}\\\begin{cases}x \le 4\\x \le -1\\\end{cases}\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x \ge 4\\x \le -1\end{array} \right.\)
Vậy...
Cảm ơn bạn