\(\left(2\sqrt{7}+4\sqrt{3}\right)\sqrt{3}-\sqrt{84}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2019

a) \(\sqrt{2}.\sqrt{98}=\sqrt{196}=14\)

b) \(\sqrt{75}:\sqrt{3}=\sqrt{25}=5\)

c) \(\sqrt{\left(3-\sqrt{11}\right)^2}=3-\sqrt{11}\)

d) \(\left(2\sqrt{7}+4\sqrt{3}\right).\sqrt{3}-\sqrt{84}=2\sqrt{21}+12-2\sqrt{21}=12\)

Nhớ tick

NV
16 tháng 9 2019

a/ \(\sqrt{2.98}=\sqrt{2.2.49}=\sqrt{2^2.7^2}=2.7=14\)

b/ \(\frac{\sqrt{75}}{\sqrt{3}}=\frac{\sqrt{25}.\sqrt{3}}{\sqrt{3}}=\sqrt{25}=5\)

c/ \(\sqrt{\left(3-\sqrt{11}\right)^2}=\left|3-\sqrt{11}\right|=\sqrt{11}-3\)

d/ \(\left(2\sqrt{7}+4\sqrt{3}\right)\sqrt{3}-\sqrt{84}\)

\(=2\sqrt{21}+4.3-2\sqrt{21}\)

\(=12\)

19 tháng 6 2017

2\(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)

\(14-\sqrt{84}+7-\sqrt{84}\)

= 21

19 tháng 6 2017

Câu 1 = 15

Câu 2 = 21

Nha!

K VÀ KB NHA !

13 tháng 7 2017

a) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)

= \(2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}\)

= \(-\sqrt{5}+15\sqrt{2}\)

b) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)

= \(\left(2\sqrt{7}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)

= \(2.7-2\sqrt{21}+7+2\sqrt{21}=14+7=21\)

c) \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)

= \(6+2\sqrt{6}.\sqrt{5}+5-2\sqrt{30}\)

= \(11+2\sqrt{30}-2\sqrt{30}=11\)

d) \(\left(\dfrac{1}{2}-\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}\)

= \(\left(\dfrac{1}{2}-\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+8\sqrt{2}\right).8\)

= \(4-4\sqrt{2}-12\sqrt{2}+64\sqrt{2}=4+48\sqrt{2}\)

13 tháng 7 2017

Bài này dễ ẹc ( đâu có khó đâu :)) )

a) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)

\(=\sqrt{2^2.5}-\sqrt{3^2.5}+3\sqrt{3^2.2}+\sqrt{6^2.2}\)

\(=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}\)

\(=\left(2-3\right)\sqrt{5}+\left(9+6\right)\sqrt{2}\)

\(=15\sqrt{2}-\sqrt{5}\)

b) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)

\(=\sqrt{2^2.7}.\sqrt{7}-2\sqrt{3}.\sqrt{7}+\sqrt{7}.\sqrt{7}+\sqrt{2^2.21}\)

\(=2.7-2\sqrt{21}+7+2\sqrt{21}\)

\(=14+7+\left(2-2\right)\sqrt{21}=21\)

c) \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)

\(=6+2\sqrt{30}+5-\sqrt{2^2.30}\)

\(=6+5+2\sqrt{30}-2\sqrt{30}=11\)

d) \(\left(\dfrac{1}{2}\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}\)

\(=\left(\dfrac{1}{2}\sqrt{\dfrac{2}{2^2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{10^2.2}\right):\dfrac{1}{8}\)

\(=\left(\dfrac{1}{4}\sqrt{2}-\dfrac{3}{2}\sqrt{2}+8\sqrt{2}\right).8\)

\(=2\sqrt{2}-12\sqrt{2}+64\sqrt{2}=54\sqrt{2}\)

Hok tốt

16 tháng 12 2016

a)\(3\sqrt{2}-\sqrt{8}+\sqrt{50}-4\sqrt{32}=3\sqrt{2}-2\sqrt{2}+5\sqrt{2}-16\sqrt{2}=-10\sqrt{2}\)

b) \(5\sqrt{48}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}=20\sqrt{3}-12\sqrt{3}-10\sqrt{3}+6\sqrt{3}=4\sqrt{3}\)

c)\(\sqrt{12}+2\sqrt{75}-3\sqrt{48}-\frac{2}{7}\sqrt{147}=2\sqrt{3}+10\sqrt{3}-12\sqrt{3}-2\sqrt{3}=-2\sqrt{3}\)

d) \(\sqrt{\left(3+\sqrt{5}\right)^2}-\sqrt{9-4\sqrt{5}}\)

\(=\left|3+\sqrt{5}\right|-\sqrt{\left(\sqrt{5}-2\right)^2}=3+\sqrt{5}-\left|\sqrt{5}-2\right|=3+\sqrt{5}-\sqrt{5}+2=5\)

e) \(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\frac{\sqrt{5}+\sqrt{2}}{3}\)

\(=\left[\frac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right]\cdot\frac{3}{\sqrt{5}+\sqrt{2}}\)

\(=-\left(\sqrt{2}+\sqrt{5}\right)\cdot\frac{3}{\sqrt{5}+\sqrt{2}}=-3\)

Nản k lm nữa ^^

16 tháng 12 2016

giết người không dao

3 tháng 9 2019

a) \(\sqrt{3^2}-\sqrt{7^2}+\sqrt{\left(-1\right)^2}=|3|-|7|+|-1|=3-7+1=-3\)

b) \(-2\sqrt{\left(-2\right)^2}+\sqrt{\left(-5\right)^2}+\sqrt{3^2}=-2|2|+|-5|+\left|3\right|=-4+5+3=4\)

c) \(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}=\left|2-\sqrt{2}\right|+\left|2+\sqrt{2}\right|=2-\sqrt{2}+2+\sqrt{2}=4\)

d) \(\sqrt{\left(3\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}=\left|3\sqrt{2}\right|-\left|1-\sqrt{2}\right|=3\sqrt{2}-\sqrt{2}+1=2\sqrt{2}+1\)

e) \(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(\sqrt{2}+1\right)^2}=\left|\sqrt{2}-1\right|+\left|\sqrt{2}+1\right|=\sqrt{2}-1+\sqrt{2}+1=2\sqrt{2}\)

f) \(\sqrt{9-4\sqrt{5}}+\sqrt{9+4\sqrt{5}}=\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{\left(\sqrt{5}+2\right)^2}=\left|\sqrt{5}-2\right|+\left|\sqrt{5}+2\right|=\sqrt{5}-2+\sqrt{5}+2=2\sqrt{5}\)

g) \(\sqrt{9-4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{9-2\sqrt{8}}+\sqrt{2-2\sqrt{2}.3+9}=\sqrt{\left(\sqrt{8}-1\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}=\sqrt{8}-1+3-\sqrt{2}=2-\sqrt{2}+\sqrt{8}\)

h) \(\sqrt{12+8\sqrt{2}}+\sqrt{6-4\sqrt{2}}=\sqrt{12+2\sqrt{4}\sqrt{8}}+\sqrt{6-2\sqrt{2}\sqrt{4}}=\sqrt{\left(\sqrt{4}+\sqrt{8}\right)^2}+\sqrt{\left(\sqrt{4}-\sqrt{2}\right)^2}=\sqrt{4}+\sqrt{8}+\sqrt{4}-\sqrt{2}\)

k) \(\left(2-\sqrt{3}\right)\sqrt{7+4\sqrt{3}}=\left(2-\sqrt{3}\right)\sqrt{\left(\sqrt{3}+2\right)^2}=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1\)