\(\left(2+3\sqrt{ }2\right)^2-\sqrt{288}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(2\sqrt{3}+\sqrt{48}-\sqrt{75}-\sqrt{243}\)

\(=\sqrt{3}\left(2+\sqrt{16}-\sqrt{25}-\sqrt{81}\right)\)

\(=\sqrt{3}\left(2+4-5-9\right)\)

\(=-8\sqrt{3}\)

b) Ta có: \(\left(\frac{\sqrt{7}-\sqrt{14}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}+\sqrt{5}}\)

\(=\left(\frac{\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right)\cdot\left(\sqrt{7}+\sqrt{5}\right)\)

\(=\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)\)

\(=7-5=2\)

c) Ta có: \(\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}\)

\(=\left(\sqrt{3}+1\right)\cdot\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)

\(=\left(\sqrt{3}+1\right)\cdot\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\left(\sqrt{3}+1\right)\cdot\left|\sqrt{3}-1\right|\)

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\)(Vì \(\sqrt{3}>1\))

\(=3-1=2\)

d) Ta có: \(5\sqrt{2}+\sqrt{18}-\sqrt{98}-\sqrt{288}\)

\(=\sqrt{2}\cdot\left(5+\sqrt{9}-\sqrt{49}-\sqrt{144}\right)\)

\(=\sqrt{2}\cdot\left(5+3-7-12\right)\)

\(=-11\sqrt{2}\)

e) Ta có: \(\left(\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{3}+\sqrt{5}}\)

\(=\left(\frac{\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right)\cdot\left(\sqrt{3}+\sqrt{5}\right)\)

\(=\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)\)

\(=3-5=-2\)

g) Ta có: \(\left(\sqrt{3}-1\right)\cdot\sqrt{4+2\sqrt{3}}\)

\(=\left(\sqrt{3}-1\right)\cdot\sqrt{3+2\cdot\sqrt{3}\cdot1+1}\)

\(=\left(\sqrt{3}-1\right)\cdot\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left(\sqrt{3}-1\right)\cdot\left|\sqrt{3}+1\right|\)

\(=\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+1\right)\)(Vì \(\sqrt{3}>1>0\))

\(=3-1=2\)

21 tháng 12 2017

B1: \(x\ne0\) ; x+1 \(\ge\) 0 <=> x ≥ -1

b, A = \(\left(2+3\sqrt{2}\right)^2-\sqrt{288}\)

= \(4+6\sqrt{2}+18-6\sqrt{8}\)

= \(22+6\left(\sqrt{2}-2\sqrt{2}\right)\)

= \(22-6\sqrt{2}\)

B= \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{3}\)

\(=\left|2+\sqrt{3}\right|-\sqrt{3}\)

\(=2+\sqrt{3}-\sqrt{3}=2\)

6 tháng 9 2019

a) \(\frac{\sqrt{2}}{2}\)

b)\(\frac{4}{9}\)

c)\(\frac{5}{3}\)

d)\(\frac{1}{12}\)

f) \(\frac{4}{15}\)

g) \(\frac{27}{100}\)

h) 2

i) -17

6 tháng 9 2019

cách làm bn ơi

20 tháng 8 2016

1/ a/ \(\sqrt{0,9.0,16.0,4}=\sqrt{\frac{9.16.4}{10000}}=\sqrt{\frac{\left(3.4.2\right)^2}{10^4}}=\frac{24}{1010}=\frac{6}{25}\)

b/ \(\sqrt{0,0016}=\sqrt{\frac{16}{100}}=\frac{4}{10}=\frac{2}{5}\)

c/ \(\frac{\sqrt{72}}{\sqrt{2}}=\frac{\sqrt{2}.\sqrt{36}}{\sqrt{2}}=\sqrt{36}=6\)

d/ \(\frac{\sqrt{2}}{\sqrt{288}}=\frac{\sqrt{2}}{\sqrt{2}.\sqrt{144}}=\frac{1}{\sqrt{144}}=\frac{1}{12}\)

20 tháng 8 2016

2.

a/ \(\frac{2}{a}.\sqrt{\frac{16a^2}{9}}=\frac{2}{a}.\frac{4\left|a\right|}{3}=-\frac{8a}{3a}=-\frac{8}{3}\) (Vì a<0)

b/ \(\frac{3}{a-1}.\sqrt{\frac{4a^2-8a+4}{25}}=\frac{3}{a-1}.\sqrt{\frac{4\left(a-1\right)^2}{25}}=\frac{3.2\left|a-1\right|}{5.\left(a-1\right)}=\frac{6\left(a-1\right)}{5\left(a-1\right)}=\frac{6}{5}\)

c/ \(\frac{\sqrt{243a}}{\sqrt{3a}}=\frac{9\sqrt{3a}}{\sqrt{3a}}=9\)

d/ \(\frac{3\sqrt{18a^2b^4}}{\sqrt{2a^2b^2}}=\frac{3.3\sqrt{2}.\left|a\right|.\left|b\right|^2}{\sqrt{2}.\left|a\right|.\left|b\right|}=9\left|b\right|\)

10 tháng 6 2015

\(\left(2+3\sqrt{2}\right)^2-\sqrt{2.144}=4+12\sqrt{2}+18-12\sqrt{2}=22\)

27 tháng 6 2019

a) \(\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}=\sqrt{2}+\sqrt{3}\)

b) \(\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)

c) \(\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}-\sqrt{3}+\sqrt{5}+\sqrt{3}\)\(=2\sqrt{5}\)

27 tháng 6 2019

d) \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}=\sqrt{2}-\sqrt{3}-1-\sqrt{3}\)

\(=\sqrt{12}-\sqrt{2}-1\)

e) \(\sqrt{\left(\sqrt{3-1}^2\right)-\sqrt{3}}=\sqrt{\sqrt{2}^2-\sqrt{3}}=\sqrt{2-\sqrt{3}}\)

P/S: Ko chắc

17 tháng 7 2018

a,( √6+2)(√3-√2)

<=> ( √2√3+2)(√3-√2)

<=> √2(√3+√2)(√3-√2)

<=> √2( (√3)2-(√2)2) = √2

b, (√3+1)2-2√3+4

<=> (√3)+2√3 +1 -2√3+4 =8

c, (1+√2-√3)(√2+√3)

<=>√2+√3+(√2)2+√6-√6-(√3)2

<=> √2+√3-1

d, √3(√2-√3)2-(√3+√2)

<=> √3( 2-2√6+3)-√3-√2

<=> 5√3-2√18-√3-√2

<=> 4√3-√2(√36-1)

<=> 4√3 - 3√2

e, (1+2√3-√2)(1+2√3+√2)

<=> (1+2√3)2-(√2)2

<=> (1+4√3+(2√3)2)-2

<=> 1+4√3+12-2= 11+4√3

g, (1-√3)2(1+2√3)2

<=>(1-2√3+3)(1+4√3+12)

<=>( 4-2√3)(13+4√3)

<=> 52+16√3-26√3-24

<=> -10√3+28

NV
13 tháng 6 2019

1/ \(=2+\sqrt{5}-\left|2-\sqrt{5}\right|=2+\sqrt{5}-\sqrt{5}+2=4\)

2/ bạn coi lại đề

3/ \(=\sqrt{2}+1-\left|1-\sqrt{2}\right|=\sqrt{2}+1-\sqrt{2}+1=2\)

4/ \(=\sqrt{3}+2-\left|\sqrt{3}-2\right|=\sqrt{3}+2-2+\sqrt{3}=2\sqrt{3}\)

5/ \(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)

6/ \(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}+1-\sqrt{3}+1=2\)

13 tháng 6 2019

Các bạn giúp mình với, tối nay mình nộp rồi.

Câu 6 sửa lại đề giúp mình như này nhé:

\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)

3 tháng 9 2019

a) \(\sqrt{25}+\sqrt{9}-\sqrt{16}\) = \(\sqrt{5^2}+\sqrt{3^2}-\sqrt{4^2}\) = 5 + 3 - 4 = 4

b) \(\sqrt{0,16}+\sqrt{0,01}+\sqrt{0,25}\) = 0,4 + 0,1 + 0,5 = 1

c) \(\left(\sqrt{3^2}\right)-\left(\sqrt{2^2}\right)+\left(\sqrt{5^2}\right)\)

= 3 - 2 + 5 = 6

d) \(\sqrt{4}-\left(-\sqrt{3}\right)^2+\sqrt{49}\) = 2 - 3 + 7 = 6

e) \(\left(2\sqrt{2}\right)^2-\left(3\sqrt{3}\right)^2\)

= \(\left(\sqrt{8}\right)^2-\left(\sqrt{27}\right)^2\) = 8 - 27 = -19

f) \(\left(-2\sqrt{2}\right)^2+\left(3\sqrt{3}\right)^2\) = 8 + 27 = 35

3 tháng 9 2019

cảm ơn nhé leuleu