\(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right).\left(1+\frac{a-\sqrt{a}}{1-\sqrt{a}}\right)\left...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

ĐK: \(a\ge0;a\ne1\)

\(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right).\left(1+\frac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)

\(=\frac{\sqrt{a}+1+a+\sqrt{a}}{\sqrt{a}+1}.\frac{1-\sqrt{a}+a-\sqrt{a}}{1-\sqrt{a}}\)

\(=\frac{1+2\sqrt{a}+a}{\sqrt{a}+1}.\frac{1-2\sqrt{a}+a}{1-\sqrt{a}}\)

\(=\frac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}.\frac{\left(1-\sqrt{a}\right)^2}{1-\sqrt{a}}\)

\(=\left(\sqrt{a}+1\right)\left(1-\sqrt{a}\right)\)

\(=1-a\)

10 tháng 3 2019

\(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1+\frac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)

\(=\left(\frac{\sqrt{a}+1+a+\sqrt{a}}{\sqrt{a}+1}\right)\left(\frac{1-\sqrt{a}+a-\sqrt{a}}{1-\sqrt{a}}\right)\)

\(=\frac{a+2\sqrt{a}+1}{\sqrt{a}+1}.\frac{a-2\sqrt{a}+1}{1-\sqrt{a}}\)

\(=\frac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}.-\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}-1}\)

\(=-\left(\sqrt{a}+1\right).\left(\sqrt{a}-1\right)\)

\(=1-a\)

26 tháng 10 2020

Mong mọi người giúp đỡ mình , mình đang cần gấp , cảm ơn mọi người 

26 tháng 10 2020

Ta có HĐT : \(\hept{\begin{cases}a\sqrt{a}+b\sqrt{b}=\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\\a\sqrt{a}-b\sqrt{b}=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)\end{cases}\left(a,b\ge0\right)}\)

\(P=\left(\frac{2a+1}{a\sqrt{a}-1}-\frac{\sqrt{a}}{a+\sqrt{a}+1}\right)\times\left(\frac{1+\sqrt{a^3}}{1+\sqrt{a}}-\sqrt{a}\right)\)

ĐKXĐ : \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)

\(=\left(\frac{2a+1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}-\frac{\sqrt{a}}{a+\sqrt{a}+1}\right)\times\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)

\(=\left(\frac{2a+1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\times\left(\frac{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}+a\right)}{1+\sqrt{a}}-\sqrt{a}\right)\)

\(=\left(\frac{2a+1-a+\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\times\left(1-\sqrt{a}+a-\sqrt{a}\right)\)

\(=\frac{a+\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\times\left(a-2\sqrt{a}+1\right)\)

\(=\frac{1}{\sqrt{a}-1}\times\left(\sqrt{a}-1\right)^2\)

\(=\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}-1}=\sqrt{a}-1\)

b) \(P\times\sqrt{1-a}\)

\(=\left(\sqrt{a}-1\right)\times\sqrt{1-a}\)

ĐKXĐ: \(0\le x< 1\)

Với \(0\le x< 1\)

Ta có :\(\hept{\begin{cases}\sqrt{a}\le\sqrt{1}=1\Rightarrow\sqrt{a}-1\le0\\\sqrt{1-a}\ge0\end{cases}}\)

\(\Rightarrow\left(\sqrt{a}-1\right)\left(\sqrt{1-a}\right)\le0\)

a) Ta có: \(A=\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\cdot\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)

\(=\left(\frac{1-x\sqrt{x}+\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\right)\cdot\left(\frac{1}{1+\sqrt{x}}\right)^2\)

\(=\frac{1-x\sqrt{x}+\sqrt{x}-x}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)

\(=\frac{-\left(x-1\right)\left(-1-\sqrt{x}\right)}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)

\(=\frac{\left(1+\sqrt{x}\right)\cdot\left(-1-\sqrt{x}\right)}{\left(1+\sqrt{x}\right)^2}\)

\(=\frac{-1\cdot\left(1+\sqrt{x}\right)^2}{\left(1+\sqrt{x}\right)^2}=-1\)

19 tháng 7 2019

undefinedundefinedcau c í mk thấy bn chép sai đề nên mk sửa lại đề rồi bạn xem lại đề rồi so với bài làm của mk nha có j ko hiểu thì ib mk nha

19 tháng 7 2019

\(a)VT = \dfrac{{{{\left( {\sqrt a + 1} \right)}^2} - 4\sqrt a }}{{\sqrt a - 1}} + \dfrac{{a + \sqrt a }}{{\sqrt a }}\\ = \dfrac{{a + 2\sqrt a + 1 - 4\sqrt a }}{{\sqrt a - 1}} + \dfrac{{\sqrt a \left( {\sqrt a + 1} \right)}}{{\sqrt a }}\\ = \dfrac{{a - 2\sqrt a + 1}}{{\left( {\sqrt a - 1} \right)}} + \sqrt a + 1\\ = \dfrac{{{{\left( {\sqrt a - 1} \right)}^2}}}{{\sqrt a - 1}} + \sqrt a + 1\\ = \sqrt a - 1 + \sqrt a + 1\\ = 2\sqrt a = VP (đpcm) \)

\(b)VT = \dfrac{{x\sqrt x + y\sqrt y }}{{\sqrt x + \sqrt y }} - {\left( {\sqrt x - \sqrt y } \right)^2}\\ = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\left( {x - \sqrt {xy} + y} \right)}}{{\sqrt x + \sqrt y }} - \left( {x - 2\sqrt {xy} + y} \right)\\ = x - \sqrt {xy} + y - x + 2\sqrt {xy} - y\\ = \sqrt {xy} (đpcm)\\ c)VT = \dfrac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}:\dfrac{{a - b}}{{\sqrt a + \sqrt b }}\\ = \dfrac{{\sqrt {ab} \left( {\sqrt a - \sqrt b } \right)}}{{\sqrt {ab} }}.\dfrac{{\sqrt a + \sqrt b }}{{a - b}}\\ = \sqrt a - \sqrt b .\dfrac{{\sqrt a + \sqrt b }}{{a - b}}\\ = \dfrac{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}{{a - b}}\\ = \dfrac{{a - b}}{{a - b}} = 1 (đpcm)\\ d)VT = \left[ {\dfrac{{{{\left( {\sqrt a - \sqrt b } \right)}^2} + 4\sqrt {ab} }}{{\sqrt a + \sqrt b }} - \dfrac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}} \right]:\sqrt b \\ = \dfrac{{a - 2\sqrt {ab} + b + 4\sqrt {ab} }}{{\sqrt a + \sqrt b }} - \dfrac{{\sqrt {ab} \left( {\sqrt a - \sqrt b } \right)}}{{\sqrt {ab} }}:\sqrt b \\ = \dfrac{{{{\left( {\sqrt a + \sqrt b } \right)}^2}}}{{\sqrt a + \sqrt b }} - \left( {\sqrt a - \sqrt b } \right):\sqrt b \\ = \sqrt a + \sqrt b - \sqrt a + \sqrt b :\sqrt b \\ = \dfrac{{2\sqrt b }}{{\sqrt b }} = 2 (đpcm) \)

Câu c đề sai (đã sửa)

30 tháng 10 2020

a) Ta có: \(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\frac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{a+2\sqrt{ab}+b-a-\sqrt{ab}-b}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)

b)Sửa đề: \(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)

Ta có: \(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}\)

\(=-2\sqrt{b}\)

c) Ta có: \(\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\left(\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\frac{\sqrt{a}-2}{3\sqrt{a}}\)

d) Ta có: \(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)

\(=\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)}-\sqrt{ab}\right)\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right)^2\)

\(=\left(a-\sqrt{ab}+b-\sqrt{ab}\right)\cdot\left(\frac{1}{\sqrt{a}-\sqrt{b}}\right)^2\)

\(=\left(a-2\sqrt{ab}+b\right)\cdot\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}=1\)

e) Ta có: \(\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)

\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}+\frac{x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{3\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}-3\right)\cdot\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)

\(=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)

6 tháng 10 2020

a) Ta có: \(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)\)

\(=\left[\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right]\cdot\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\)

\(=\left(1+\sqrt{a}+a+\sqrt{a}\right)\cdot\frac{1}{1+\sqrt{a}}\)

\(=\left(1+\sqrt{a}\right)^2\cdot\frac{1}{1+\sqrt{a}}\)

\(=1+\sqrt{a}\) Bằng 1 kiểu gì đây._.?

6 tháng 10 2020

a) Xin lỗi sửa lại phần a:

Ta có: \(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(1+\sqrt{a}\right)^2\cdot\frac{1}{\left(1+\sqrt{a}\right)^2}\)

\(=1\)

b) Ta có: \(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{3+2\sqrt{6}+2}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)=3-2=1\)

27 tháng 11 2017

\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\frac{1-a\sqrt{a}+\sqrt{a}-a}{1-\sqrt{a}}.\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)

\(=\left(1-a\sqrt{a}+\sqrt{a}-a\right)\frac{1-\sqrt{a}}{\left(1-a\right)^2}\)

\(=\frac{1-a\sqrt{a}+\sqrt{a}-a-\sqrt{a}+a.\left(\sqrt{a}\right)^2-\left(\sqrt{a}\right)^2+a\sqrt{a}}{\left(1-a\right)^2}\)

\(=\frac{a^2-2a+1}{\left(1-a\right)^2}=\frac{\left(a-1\right)^2}{\left(1-a\right)^2}\)

\(=\left(\frac{a-1}{1-a}\right)^2=\left(-1\right)^2=1=VP\left(ĐPCM\right)\)

6 tháng 9 2018

Ta có:

=\(\frac{\sqrt{a}+1}{a\sqrt{a}+a+\sqrt{a}}.\left(a^2-\sqrt{a}\right)\)

=\(\frac{\sqrt{a}+1}{\sqrt{a}\left(a+\sqrt{a}+1\right)}.\left(\sqrt{a}^3-1\right).\sqrt{a}\) (do a>=0 => căn a mũ 3 >=0)

=\(\frac{\sqrt{a}+1}{a+\sqrt{a}+1}.\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)\)

=\(\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)\)

=\(a-1\)