K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 8 2020

Gọi pt (E) có dạng \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)

\(e=\frac{c}{a}=\frac{2}{3}\Rightarrow c=\frac{2a}{3}\Rightarrow c^2=\frac{4a^2}{9}\)

\(\Rightarrow b^2=a^2-c^2=\frac{5a^2}{9}\)

Pt (E) có dạng: \(\frac{x^2}{a^2}+\frac{\frac{9}{5}y^2}{a^2}=1\Leftrightarrow a^2=x^2+\frac{9}{5}y^2\)

Thay tọa độ M vào ta được:

\(a^2=2^2+\frac{9}{5}\left(\frac{5}{2}\right)^2=\frac{61}{4}\Rightarrow b^2=\frac{305}{36}\)

Pt (E): \(\frac{x^2}{\frac{61}{4}}+\frac{y^2}{\frac{305}{36}}=1\)

3 tháng 8 2019

Do tâm sai của ( E) là 1/2 nên

mà Elip qua điểm (6;0) nên a= 6

=> c= 3 => b2= a2- c2= 36- 9= 27

Vậy

Chọn A.

8 tháng 5 2019

Đường thẳng Δ song song với d ⇒ Δ: x + y + c = 0, (c ≠ 0)

Vì Δ đi qua A ⇒ 3 + 0 + c = 0 ⇒ c = -3(tm)

Vậy đường thẳng Δ có dạng: x+y-3=0

Vì đường tròn có tâm I thuộc d nên I(a;-a)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vì đường tròn đi qua A, B nên I A 2  = I B 2  ⇒ (3 - a ) 2  + a 2  = a 2  + (2 + a ) 2  ⇔ (3 - a ) 2  = (2 + a ) 2

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vậy phương trình đường tròn có dạng:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Ta có: 

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Giả sử elip (E) có dạng:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vì (E) đi qua B nên:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vậy phương trình chính tắc của elip (E) là:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

1 tháng 10 2018

Gọi phương trình chính tắc elip cần tìm là

.

Do elip đi qua

nên ta có hệ

 

Vậy elip cần tìm là

Chọn C.

30 tháng 4 2023

 \(F_1F_2=2c=2\sqrt{5}\)

\(\Rightarrow c=\dfrac{2\sqrt{5}}{2}=\sqrt{5}\)

\(\left(E\right)\) qua  \(\left(5;0\right)\Rightarrow a=5\)

Ta có : \(b=\sqrt{a^2-c^2}\)

\(\Rightarrow b^2=a^2-c^2\)

\(\Rightarrow b^2=5^2-\sqrt{5}^2\)

\(\Rightarrow b^2=25-5=20\)

Vậy \(PTCT\left(E\right):\dfrac{x^2}{25}+\dfrac{y^2}{20}=1\)

 

30 tháng 4 2023

cảm ơn ạ

1 tháng 12 2019

Gọi Elip cần tìm có dạng : (E) : Giải bài 3 trang 88 SGK hình học 10 | Giải toán lớp 10

Giải bài 3 trang 88 SGK hình học 10 | Giải toán lớp 10

Vậy phương trình chính tắc của elip: Giải bài 3 trang 88 SGK hình học 10 | Giải toán lớp 10

14 tháng 11 2017

Đáp án A

Ta có tâm sai  

khoảng cách giữa hai đường chuẩn là:

Suy ra phương trình elip là:

1: (E): x^2/a^2+y^2/b^2=1

Thay x=0 và y=3 vào (E), ta được:

3^2/b^2=1

=>b^2=9

=>b=3

F2(5;0)

=>c=5

=>\(\sqrt{a^2-9}=5\)

=>a^2-9=25

=>a^2=34

=>\(a=\sqrt{34}\)

=>x^2/34+y^2/9=1

2: Thay x=7 và y=0 vào (E), ta được:

7^2/a^2+0^2/b^2=0

=>a^2=49

=>a=7

Thay x=0 và y=3 vào (E), ta được:

0^2/a^2+3^2/b^2=1

=>b^2=9

=>b=3

=>(E): x^2/49+y^2/9=1

3: Thay x=0 và y=1 vào (E), ta được:

1/y^2=1

=>y=1

=>(E): x^2/a^2+y^2/1=1

Thay x=1 và y=căn 3/2 vào (E), ta được:

1^2/a^2+3/4=1

=>1/a^2=1/4

=>a^2=4

=>a=2

=>(E); x^2/4+y^2/1=1

8 tháng 12 2019

17 tháng 4 2022

Chỗ trục lớn gấp 2 lần trục bé như vậy ạ. Sao không phải là 2.2a=2b ạ. Mong bạn trả lời. Mình cảm ơn!!

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Phương trình đường tròn (C) có tâm \(I\left( { - 4;2} \right)\) và bán kính \(R = 3\) là: \({\left( {x + 4} \right)^2} + {\left( {y - 2} \right)^2} = 9\).

b) Bán kính đường tròn là: \(R = PE = \sqrt {{{\left( {1 - 3} \right)}^2} + {{\left( {4 + 2} \right)}^2}}  = \sqrt {40} \)

Phương trình đường tròn là: \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 40\).

c) Bán kính đường tròn là: \(R = \frac{{\left| {3.5 + 4.\left( { - 1} \right) - 1} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \frac{{10}}{5} = 2\)

Phương trình đường tròn là: \({\left( {x - 5} \right)^2} + {\left( {y + 1} \right)^2} = 4\)

d) Giả sử  tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = ID \Leftrightarrow I{A^2} = I{B^2} = I{D^2}\)

Vì \(I{A^2} = I{B^2},I{B^2} = I{D^2}\) nên: \(\left\{ \begin{array}{l}{\left( { - 3 - a} \right)^2} + {\left( {2 - b} \right)^2} = {\left( { - 2 - a} \right)^2} + {\left( { - 5 - b} \right)^2}\\{\left( { - 2 - a} \right)^2} + {\left( { - 5 - b} \right)^2} = {\left( {5 - a} \right)^2} + {\left( {2 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b =  - 1\end{array} \right.\) 

=> \(I\left( {1; - 1} \right)\) và \(R = IA = \sqrt {{{\left( 4 \right)}^2} + {{\left( { - 3} \right)}^2}}  = 5\)

Vậy phương trình đường tròn đi qua 3 điểm A,B, D là: \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = 25\)