\(\righta...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

câu 3 nhaa bn 

\(=AI+h_2O+AI\left(OH\right)_3=\)\(H_2\)

17 tháng 8 2019

\(2Na+2H_2O\rightarrow2NaOH+H_2\)

\(Ca+2H_2O\rightarrow Ca\left(OH\right)_2+H_2\)

\(2Al+6H_2O\rightarrow2Al\left(OH\right)_3+3H_2\)

\(P_2O_3+3H_2O\rightarrow2H_3PO_3\)

\(P_2O_5+3H_2O\rightarrow2H_3PO_4\)

18 tháng 8 2019

Những câu hỏi liên quan đến Hòa thì bạn lên web www.h.vn để đc giải đáp tốt hơn nhé!

(trên đấy nhiều ARMY cựcc :3)

18 tháng 8 2019

AlC3 + H2O -> Al(OH)3 + CH4

\(a,x^3-x^2-12x+45=0\)

\(\left(x-3\right)\left(x-3\right)\left(x+5\right)=0\)

\(x=3;3;-5\)

\(b,2x^3-5x^2+8x-5=0\)

\(\left(2x^2-3x+5\right)\left(x-1\right)=0\)

\(x=1\)

lm 1 câu đã chán ngắt , giải mấy câu nữa não tớ nổ bùmmm , tớ bt đây là trang web để hc nhưng tạo nên tiếng cười là chính nha ^^ 

16 tháng 11 2018

1. \(C_xH_y\left(COOH\right)_2+\left(x+\frac{y}{4}-\frac{1}{2}\right)O_2\rightarrow\left(x+1\right)CO_2+\left(\frac{y}{2}+1\right)H_2O.\)

Ý 2 đề có sai ko pn??

16 tháng 11 2018

ko sai đâu

\(\Leftrightarrow\orbr{\begin{cases}x^2-2x+4=2x+1\\x^2-2x+4=-2x-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2-4x+3=0\\x^2+5=0\left(loai\right)\end{cases}}\)

\(\Leftrightarrow x^2-3x-x+3=0\Leftrightarrow x.\left(x-3\right)-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right).\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

30 tháng 3 2019

x = 3

x = 1 

đó 100% đúng lun

ahhhhhhiiiiiiiiiiiiii

Giải phương trình nghiệm nguyên \(2^x+3^y=z^2\)Nếu y=0 thì \(2^x=\left(z-1\right)\left(z+1\right)\)           Nếu \(x=0\Rightarrow\left(z-1\right)\left(z+1\right)=1\Rightarrow pt\) vô nghiệm.           Nếu \(x\ne0\Rightarrow\left(z-1\right)\left(z+1\right)\) chẵn           Đặt \(z-1=2m\Rightarrow z+1=2m+2\Rightarrow2^x=\left(z-1\right)\left(z+1\right)=4m\left(m+1\right)\)           Bên trái là lũy thừa cơ số 2,vế phải là tích...
Đọc tiếp

Giải phương trình nghiệm nguyên \(2^x+3^y=z^2\)

Nếu y=0 thì \(2^x=\left(z-1\right)\left(z+1\right)\)

           Nếu \(x=0\Rightarrow\left(z-1\right)\left(z+1\right)=1\Rightarrow pt\) vô nghiệm.

           Nếu \(x\ne0\Rightarrow\left(z-1\right)\left(z+1\right)\) chẵn

           Đặt \(z-1=2m\Rightarrow z+1=2m+2\Rightarrow2^x=\left(z-1\right)\left(z+1\right)=4m\left(m+1\right)\)

           Bên trái là lũy thừa cơ số 2,vế phải là tích của 4 cho tích của 2 số tự nhiên liên tiếp nên dễ dàng suy ra m=1 suy ra x=3;z=3

Nếu \(y\ne0\)

           Nếu x lẻ ta có:\(2^x\equiv2\left(mod3\right)\Rightarrow2^x+3^y\equiv2\left(mod3\right)\Rightarrow z^2\equiv2\left(mod3\right)\) ( vô lý )

           Nếu x=0 ta có:\(3^y=\left(z-1\right)\left(z+1\right)\Rightarrow z=2\Rightarrow y=1\)

           Nếu x khác 0 ta có x là số chẵn nên \(2^x\equiv0\left(mod4\right);z^2\equiv0;1\left(mod4\right)\Rightarrow3^y\equiv1\left(mod4\right)\Rightarrow y=2k\)

           Ta có:\(2^x=z^2-\left(3^k\right)^2=\left(z-3^k\right)\left(z+3^k\right)\)

           Khi đó \(\left(z-3^k\right)\left(z+3^k\right)=2^u\cdot2^v\Rightarrow\hept{\begin{cases}z-3^k=2^u\\z+3^k=2v\end{cases}}\Rightarrow2\cdot3^k=2^u\left(2^{u-v}-1\right)\Rightarrow u=1\)

            \(\Rightarrow z-3^k=2\Rightarrow2^{v-1}-3^k=1\)

            \(3^k\equiv0\left(mod3\right)\Rightarrow2^{v-1}\equiv1\left(mod3\right)\Rightarrow v-1=2t\)

             \(pt\Leftrightarrow2^{2t}-3^k=1\Rightarrow3^k=\left(2^t-1\right)\left(2^t+1\right)\Rightarrow\hept{\begin{cases}2^t-1=3^{k_1}\\2^t+1=3^{k_2}\end{cases}}\)

             \(\Rightarrow3^{k_2}-3^{k_1}=2\Rightarrow3^{k_1}+2=3^{k_2}\Rightarrow k_1=0;k_2=1\Rightarrow z=5\Rightarrow x=4;y=2;z=5\)

Vậy bộ ba nghiệm (x,y,z) thỏa mãn là \(\left(3;0;3\right);\left(0;1;2\right);\left(4;2;5\right)\)

P/S:Bài giải phần đầu có sự trợ giúp của anh Nguyễn Nhất Huy ( giải nhất thi HSG Cấp Thành Phố vòng 1;được lên báo Toán học tuổi trẻ số 509  ),thanks a nhìu.Key đây nha ! Nhầm chỗ nào tự sửa nốt.

 

 

       

 

0
18 tháng 10 2020

a) ( 3 - x )( x2 + 2x - 7 ) + ( x - 3 )( x2 + x - 5 )

= ( 3 - x )( x2 + 2x - 7 ) - ( 3 - x )( x2 + x - 5 )

= ( 3 - x )( x2 + 2x - 7 - x2 - x + 5 )

= ( 3 - x )( x - 2 )

b) ( x - 5 )2 + 3( 5 - x )

= ( x - 5 )2 - 3( x - 5 )

= ( x - 5 )( x - 5 - 3 ) = ( x - 5 )( x - 8 )

c) 2x( x - 1 )2 - ( 1 - x )3

= 2x( 1 - x )2 - ( 1 - x )3

= ( 1 - x )2( 2x - 1 + x ) = ( 1 - x )2( 3x - 1 )

d) x2 + 8x + 16 = ( x + 4 )2

e) x2 - 4xy + 4y2 = ( x - 2y )2

g) 4x2 - 25y2 = ( 2x )2 - ( 5y )2 = ( 2x - 5y )( 2x + 5y )

h) 25( x + 1 )2 - 4( x - 3 )2

= 52( x + 1 )2 - 22( x - 3 )2

= ( 5x + 5 )2 - ( 2x - 6 )2

= ( 5x + 5 - 2x + 6 )( 5x + 5 + 2x - 6 )

= ( 3x + 11 )( 7x - 1 )

i) x3 + 27 = ( x + 3 )( x2 - 3x + 9 )

k) 8x3 - 125 = ( 2x )3 - 53 = ( 2x - 5 )( 4x2 + 10x + 25 )

l) x3 + 6x2 + 12x + 8 = ( x + 2 )3

m) -x3 + 9x2 - 27x + 27 = -( x3 - 9x2 + 27x - 27 ) = -( x - 3 )3