K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

20 tháng 6 2019

a) Ta có bảng bỏ dấu GTTĐ:

x  x<2   2  2<x<5 5    5<x 
|x-2|2-x0x-23x-2
|x-5|5-x35-x0x-5
Vế Trái7-2x3332x-7

+) Với x < 2 : \(7-2x=3\Leftrightarrow2x=4\Leftrightarrow x=2\)( vô lý => Loại )

+) Với x = 2 :\(3=3\)( hợp lý => Chọn )

+) Với 2 < x < 5 : \(3=3\)( hợp lý => Chọn )

+) Với x = 5 : \(3=3\)( hợp lý => Chọn )

+) Với x > 5 : \(2x-7=3\Leftrightarrow2x=10\Leftrightarrow x=5\)( vô lý => Loại )

Vậy \(2\le x\le5.\)

Mình chỉ làm phần a) thôi nhé. 5 phần còn lại bạn làm tương tự nhé !



 

20 tháng 6 2019

Nhóc anh chỉ làm 1 phần hướng dẫn nhé các phần khác em nhìn và làm theo.

a) \(|x-2|+|x-5|=3\left(1\right)\)

Ta có: \(x-2=0\Leftrightarrow x=2\)

               \(x-5=0\Leftrightarrow x=5\)

Lập bảng xét dấu:

x-2 x-5 2 5 0 0 - - - + + +

+) Với \(x< 2\Rightarrow\hept{\begin{cases}x-2< 0\\x-5< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2|=2-x\\|x-5|=5-x\end{cases}}\left(2\right)}\)

Thay (2) vào (1) ta được :

\(\left(2-x\right)+\left(5-x\right)=3\)

\(7-2x=3\)

\(2x=4\)

\(x=2\)( chọn )

+) Với \(2\le x\le5\Rightarrow\hept{\begin{cases}x-2>0\\x-5< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2|=x-2\\|x-5|=5-x\end{cases}}}\left(3\right)\)

Thay (3) vào (1) ta được :

\(\left(x-2\right)+\left(5-x\right)=3\)

\(3=3\)( luôn đúng chọn )

+) Với \(x>5\Rightarrow\hept{\begin{cases}x-2>0\\x-5>0\end{cases}}\Rightarrow\hept{\begin{cases}|x-2|=x-2\\|x-5|=x-5\end{cases}\left(4\right)}\)

Thay (4) vào (1) ta được :

\(\left(x-2\right)+\left(x-5\right)=3\)

\(2x-7=3\)

\(2x=10\)

\(x=5\)( loại )

Vậy \(2\le x\le5\)

26 tháng 6 2020

Bạn sai rồi

26 tháng 6 2020

À mik nhẩm cho qua thoii cậu nhé ,mik ko giỏi đại hihi

a: \(f\left(x\right)+g\left(x\right)-h\left(x\right)\)

\(=5x^5-4x^4+3x^3-x^2-3x+4+x^5-2x^4+x^3-x+7\)

\(=6x^5-6x^4+4x^3-x^2-4x+11\)

f(x)-g(x)-h(x)

\(=15x^5-12x^4+9x^3-7x^2+7x+x^5-2x^4+x^3-x+7\)

\(=16x^5-14x^4+10x^3-7x^2+6x+7\)

b: f(x)+2g(x)=0

\(\Leftrightarrow10x^5-8x^4+6x^3-4x^2+2x+2-10x^5+8x^4-6x^3+6x^2-10x+4=0\)

\(\Leftrightarrow2x^2-8x+6=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

=>x=1 hoặc x=3

Bài 1:

a) Ta có: \(P\left(x\right)=3x^4+2x^2-3x^4-2x^2+2x-5\)

\(=\left(3x^4-3x^4\right)+\left(2x^2-2x^2\right)+2x-5\)

\(=2x-5\)

Bài 1: 

b) 

\(P\left(-1\right)=2\cdot\left(-1\right)-5=-2-5=-7\)

\(P\left(3\right)=2\cdot3-5=6-5=1\)

28 tháng 1 2020

a) \(F\left(x\right)=\left(2x^2-4x+5\right)-\left(x^2-6\right)+2x-3\)

\(=2x^2-4x+5-x^2+6+2x-3\)

\(=\left(2x^2-x^2\right)+\left(2x-4x\right)+\left(5+6-3\right)\)

\(=x^2-2x+8\)

Hệ số tự do của đa thức F(x) là: 8

Hệ số bậc 1 của đa thức F(x) là: -2

b) \(F\left(x\right)=x^2-2x+8\)\(G\left(x\right)=-x^2-2x-9\)

+) \(\Rightarrow F\left(x\right)+G\left(x\right)=\left(x^2-2x+8\right)+\left(-x^2-2x-9\right)\)

\(=\left(x^2-x^2\right)+\left(-2x-2x\right)+\left(8-9\right)=-4x-1\)

Vậy \(M\left(x\right)=-4x-1\)

+) và \(F\left(x\right)-G\left(x\right)=\left(x^2-2x+8\right)-\left(-x^2-2x-9\right)\)

\(=\left(x^2+x^2\right)+\left(-2x+2x\right)+\left(8+9\right)=2x^2+17\)

Vậy \(N\left(x\right)=2x^2+17\)

c)

+) M(x) có nghiệm khị và chỉ khi M(x) = 0

\(\Leftrightarrow-4x-1=0\Leftrightarrow-4x=1\Leftrightarrow x=\frac{-1}{4}\)

Vậy M(x) có 1 nghiệm là \(\frac{-1}{4}\)

+) N(x) có nghiệm khị và chỉ khi N(x) = 0

\(\Leftrightarrow2x^2+17=0\)

Mà \(2x^2+17\ge17\left(dox^2\ge0\right)\)

Nên N(x) vô nghiệm

d) F(x) = x2 - 3\(\Leftrightarrow x^2-2x+8=x^2-3\Leftrightarrow-2x=-11\)

\(\Leftrightarrow x=\frac{11}{2}\)

Vậy \(x=\frac{11}{2}\)thì  F(x) = x2 - 3