Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(4x^3-xy^2+y^3\right)\left(x^2y+2xy^2-2y^3\right)\)
\(=x^2y\left(4x^3-xy^2+y^3\right)+2xy^2\left(4x^3-xy^2+y^3\right)\)
\(-2y^3\left(4x^3-xy^2+y^3\right)\)
\(=4x^5y-x^3y^3+x^2y^4+8x^4y^2-2x^2y^4+2xy^5\)
\(-8x^3y^3+2xy^5-2y^6\)
\(=-2y^6+4x^5y+\left(2xy^5+2xy^5\right)+8x^4y^2+\left(x^2y^4-2x^2y^4\right)\)
\(-\left(x^3y^3+8x^3y^3\right)\)
\(=-2y^6+4x^5y+4xy^5+8x^4y^2-x^2y^4-9x^3y^3\)
b)
(!) \(2\left(x+y\right)^2-7\left(x+y\right)+5\)
\(=2\left(x+y\right)^2-2\left(x+y\right)-5\left(x+y\right)+5\)
\(=2\left(x+y\right)\left(x+y-1\right)-5\left(x+y-1\right)\)
\(=\left(2x+2y-5\right)\left(x+y-1\right)\)
(!!) \(\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-x^2-y^2-z^2\)
\(=2\left(xy+yz+zx\right)\)
Bài 1:
\(=3x^3y-6x^2y^2+15xy\)
Bài 2:
\(=\left(x+y\right)^2-25=\left(x+y+5\right)\left(x+y-5\right)\)
\(x^2+2xy-25+y^2\\ =\left(x^2+2xy+y^2\right)-5^2\\ =\left(x+y\right)^2-5^2\\ =\left(x+y-5\right)\left(x+y+5\right)\)
Bài 2:
a: =>4x(x+5)=0
=>x=0 hoặc x=-5
b: =>(x+3)(x-3)=0
=>x=-3 hoặc x=3
\(\frac{2}{5}x\left(y-1\right)-\frac{2}{5}y\left(y-1\right)\)
\(=\left(y-1\right)\left[\left(\frac{2}{5}x-\frac{2}{5}y\right)\right]\)
\(=\left(y-1\right)\frac{2}{5}\left(x-y\right)\)
a,\(x^2+2xy+7x+7y+y^2+10=\left(x^2+2xy+y^2\right)+7\left(x+y\right)+10\)
\(=\left(x+y\right)^2+2\left(x+y\right)+5\left(x+y\right)+10\)
\(=\left(x+y\right)\left(x+y+2\right)+5\left(x+y+2\right)\)
\(=\left(x+y+2\right)\left(x+y+5\right)\)
b,\(x^2y+xy^2+x+y=2010\Rightarrow xy\left(x+y\right)+x+y=2010\)
\(\Rightarrow12\left(x+y\right)=2010\Rightarrow x+y=167,5\)
Ta có:\(x^2+y^2=x^2+2xy+y^2-2xy=\left(x+y\right)^2-2xy=\left(167,5\right)^2-2.11=28034,25\)
a) \(100x^2-\left(x^2+25\right)^2=\left(10x\right)^2-\left(x^2+25\right)^2=\left(10x-x^2-25\right)\left(10x+x^2+25\right)\)
\(=-\left(x-5\right)^2\left(x+5\right)^2\)
b) \(\left(x-y+5\right)^2-2\left(x-y+5\right)+1=\left(x-y+5-1\right)^2=\left(x-y+4\right)^2\)
c) \(\left(x^2+4y^2-5\right)^2-16\left(x^2+y^2+2xy+1\right)\)
Có lẽ bạn ghi sai đề rồi nha.
A . 5(x-y)-y(x-y)
=(x6-y)(5-y)
B . x^2 - xy - 8x+8y
=(x^2-xy)-(8x-8y))
=x(x-y) - 8(x-y)
C. x^2-10x+25 - y^2
=(x^2 - 10x + 25 ) - y^2
=(x-5)^2 - y^2
=(x-5+y)(x-5-y)
D . x^3 - 3x^2-4x+12
=(x^3 - 3x^2 ) - (4x - 12)
=x^2 (x-3)-4(x-3)
=(x^2-4)(x-3)
=(x+2)(x-2)(x-3)
D . 2x^2-2y^2- 6x-6y
=(2^x - 2y^2) - (6x+ 6y)
=2(x^2 - y^2) - 6(x+y)
=2(x+y)(x-y) - 6(x+y)
=2(x+y)(x-y-3)
E . x^3 - 3x^2 + 3x - 1
=(x-1)^3
D.x^2+3x+2
=x^2+2x+x+2
=(x^2+2x)+(x+2)
=x(x+2)+(x+2)
=(x+2)(x+1)
25(x-y)2-16(x+y)2
=[5(x-y)]2-[4(x+y)]2
=[5x-5y]2-[4x+4y]2
=(5x-5y+4x+4y)[(5x-5y)-(4x+4y)]
=(9x-y)(x-9y)
a, \(=12x^5+9x^3y^2-6x^2y^3-20x^4y-15x^2y^3-10xy^4-24x^3y^2-18xy^4+12y^5\)
(tự rút gọn cái :P)
b, \(8x^3+4x^2y-2xy^2-y^3\)
\(=4x^2\left(2x+y\right)-y^2\left(2x+y\right)=\left(2x+y\right)^2\left(2x-y\right)\)
\(4x^2y^2-4x^2-4xy-y^2=4x^2y^2-\left(2x+y\right)^2\)
\(=\left(2x+y+2xy\right)\left(2xy-2x+y\right)\)
Mấy cái còn lại nhân tung ra là được mà :))))