K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

Mình biết làm nhưng không tìm thấy chỗ chia ở đâu hết

29 tháng 10 2017

bn hiểu sao thì làm giùm cái

25 tháng 12 2016

Các bạn ơi giải giúp mình với, mình đang cần gấp

3 tháng 9 2019

-3x^3+5x^2-9x+15 -3x-5 x^2 -3x^3-5x^2 - 10x^2-9x+15 -(10/3)x 10x^2+(50/3)x - -(23/3)x+15 +23/9 -(23/3)x-115/9 - 250/9

Chả biết có sai ko @@

3 tháng 9 2019

x^4-2x^3 +2x-1 x^2-1 x^2-2x x^4 -x^2 - -2x^3+x^2+2x-1 -2x^3 +2x - x^2-1 +1 x^2-1 - 0

30 tháng 6 2017

Ta có : x3 - 3x+ x - 3 

= x2(x - 3) + (x - 3)

= (x - 3) (x2 + 1) 

Nên : (x3 - 3x+ x - 3) : (x - 3)

= (x - 3) (x2 + 1) : (x - 3)

= (x2 + 1) 

AH
Akai Haruma
Giáo viên
20 tháng 9 2018

\(A=x^2+2x+6=(x^2+2x+1)+5=(x+1)^2+5\)

\((x+1)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow A\geq 0+5=5\)

Vậy GTNN của $A$ là $5$ khi $(x+1)^2=0$ hay $x=-1$

--------------

\(B=x^2-6x+15=(x^2-2.3x+3^2)+6=(x-3)^2+6\)

\((x-3)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow B\geq 0+6=6\)

Vậy GTNN của $B$ là $6$ khi $x=3$

---------------

\(C=x^2-5x+3=x^2-2.\frac{5}{2}x+(\frac{5}{2})^2-\frac{13}{4}=(x-\frac{5}{2})^2-\frac{13}{4}\)

\((x-\frac{5}{2})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow C\geq 0-\frac{13}{4}=\frac{-13}{4}\)

Vậy \(C_{\min}=\frac{-13}{4}\Leftrightarrow x=\frac{5}{2}\)

AH
Akai Haruma
Giáo viên
20 tháng 9 2018

\(D=2x^2-7x+1=2(x^2-\frac{7}{2}x)+1\)

\(=2[x^2-2.\frac{7}{4}x+(\frac{7}{4})^2]-\frac{41}{8}\)

\(=2(x-\frac{7}{4})^2-\frac{41}{8}\)

\((x-\frac{7}{4})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow D\geq 2.0-\frac{41}{8}=-\frac{41}{8}\)

Vậy \(D_{\min}=-\frac{41}{8}\Leftrightarrow x=\frac{7}{4}\)

--------------------

\(E=3x^2+2x=3(x^2+\frac{2}{3})=3[x^2+2.\frac{1}{3}x+(\frac{1}{3})^2]-\frac{1}{3}\)

\(=3(x+\frac{1}{3})^2-\frac{1}{3}\)

\((x+\frac{1}{3})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow E\geq 3. 0-\frac{1}{3}=\frac{-1}{3}\)

Vậy \(E_{\min}=\frac{-1}{3}\Leftrightarrow x=\frac{-1}{3}\)

22 tháng 7 2017

đặt tính theo cột dọc, ta nhận được kết quả:

\(\left(2x^4-3x^3-7x^2-5x-3\right):\left(2x^2+x+1\right)\)

\(=x^2-2x-3\)