K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2019

18 x 2 y 2 z   :   6 x y z = 18 : 6 x 2 : x y 2 : y z : z = 3 x y

6 tháng 8 2017

\(x+y+z=0\Leftrightarrow x^2+y^2+z^2+2xy+2x+2yz=0\)

\(\Leftrightarrow x^2+y^2+z^2=-2xy-2yz-2xz\)

Có: 

\(P=\frac{18\left(x^2+y^2+z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

\(=\frac{18\left(x^2+y^2+z^2\right)}{2\left(x^2+y^2+z^2\right)-2xy-2xz-2yz}\)

\(=\frac{18\left(x^2+y^2+z^2\right)}{2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2}\)

\(=\frac{18\left(x^2+y^2+z^2\right)}{3\left(x^2+y^2+z^2\right)}=6\)

15 tháng 3 2020

\(\Leftrightarrow x^2+y^2+z^2=-2xy-2yz-2xz\)

\(P=\frac{18\left(x^2+y^2+z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

\(=\frac{18\left(x^2+y^2+z^2\right)}{2\left(x^2+y^2+z^2\right)-2xy-2xz-2yz}\)

\(=\frac{18\left(x^2+y^2+z^2\right)}{2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2}\)

\(=\frac{18\left(x^2+y^2+z^2\right)}{3\left(x^2+y^2+z^2\right)}=6\)

\(\text{Sử dụng AM-GM, ta có}\)

\(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\Rightarrow x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)

\(xy+yz+xz\le x^2+y^2+z^2\)

\(\text{Cộng theo vế, ta được}\)

\(6=x+y+z+xy+yz+xz\le\sqrt{3\left(x^2+y^2+z^2\right)+x^2+y^2+z^2}\)

Suy ra\(x^2+y^2+z^2\ge3\)

12 tháng 2 2020

\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)

\(\Rightarrow x^2+y^2+z^2+3\ge2x+2y+2z\Rightarrow\frac{x^2+y^2+z^2}{2}+\frac{3}{2}\ge x+y+z\)

\(x^2+y^2\ge2xy;y^2+z^2\ge2yz;z^2+x^2\ge2zx\)

\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)

Khi đó:\(\frac{3}{2}\left(x^2+y^2+z^2\right)+\frac{3}{2}\ge x+y+z+xy+yz+zx=6\)

\(\Rightarrow x^2+y^2+z^2+1\ge4\Rightarrow x^2+y^2+z^2\ge3\)

5 tháng 10 2017

a)\(\left(x+y\right)^2:\left(x+y\right)=\left(x+y\right)^{2-1}=x+y\)

b)\(\left(x-y\right)^5:\left(y-x\right)^4=\left(x-y\right)^5:\left(-\left(x-y\right)^4\right)=-\left(x-y\right)^{5-4}=-\left(x-y\right)\)

c)\(\left(x-y+z\right)^4:\left(x-y+z\right)^3=\left(x-y+z\right)^{4-3}=x-y+z\)

8 tháng 10 2017

a) (x+y)^2:(x+y)=x+y

b) (x−y)^5:(y−x)^4=(x-y)^5:[-(x-y)]^4=x-y

c) (x−y+z)^4:(x−y+z)^3=x-y+z

22 tháng 7 2018

Sorry mình mới học lớp 5

14 tháng 3 2020

mk cx vậy

28 tháng 7 2017

Ta có: \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

Áp dụng vào bài

\(A=\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)

\(=x^3+y^3+3xy\left(x+y\right)+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Nếu trong tích \(\left(x+y\right)\left(y+z\right)\left(x+z\right)\) có ít nhất 2 thừa số chia hết cho 2 thì tích đó chia hết cho 2

Nếu cả 3 thừa số đều không chia hết cho 2, ta có: \(x+y=2k+1;y+z=2q+1\)

\(\Rightarrow2y+x+z=2k+2q+2\)

\(\Leftrightarrow x+z=2k+2q+2-2y\)

\(\Leftrightarrow x+z=2\left(k+q+1-y\right)\)

Vế phải chia hết cho 2 nên vế trái cũng chia hết cho 2

Vậy: \(\left(x+y\right)\left(y+z\right)\left(x+z\right)⋮2\forall x,y,z\in Z\)

\(\Rightarrow3\left(x+y\right)\left(y+z\right)\left(x+z\right)⋮6\forall x,y,z\in Z\)

Vậy: \(A⋮6\forall x,y,z\in Z\)

31 tháng 10 2018

Ta có: x + y + z = 6

=> ( x + y + z ) ^2 = 6^2

=> x^2 + y^2 + z^2 + 2xy + 2xz + 2yz  = 36  ( Hằng đẳng thức mở rộng )

=> 2 ( xy + xz + yz ) = 36 -12 ( vì x^2 + y^2 + z^2 = 12 )

=> xy +xz + yz = 12 

Mà: x^2 + y^2 + z^2 = 12

=> x.x+y.y+z.z = x.y + x.z + y.z 

=> x = y = z

Theo bài: x + y +z = 6

=> 3x = 6

=> x = 2

=> y = z = x = 2

Vậy:.......

31 tháng 10 2018

Ở đoạn \(x^2+y^2+z^2=xy+yz+zx\\ \) chẳng có ai lại làm cộc lốc như bạn Truong_tien_phuong này cả

Mình đố bạn đi thi vòng trường thị như thế mà người ta cho bạn điểm tối đa đấy( Không được điểm tối da chứ ko phải là không cho điểm)

Sau đây mình xin góp ý:

\(x^2+y^2+z^2=xy+yz+zx\)\(\Rightarrow\)\(x^2+y^2+z^2-xy-yz-zx=0\)

\(\Rightarrow\)\(2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Rightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx=\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\)

Dấu bằng xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)

\(\Rightarrow\)\(x=y=z\)

Theo bài : x + y + z = 6 ...  blah blah blah

16 tháng 8 2016

1. \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx\)

2. \(\left(x-y+z\right)^2=x^2+y^2+z^2-2xy-2yz+2xz\)

3. \(\left(x+y-z\right)^2=x^2+y^2+z^2+2xy-2yz-2zx\)

4. \(\left(x-y-z\right)^2=x^2+y^2+z^2-2xy+2yz-2zx\)

5./6.  Kết hợp từ trên

31 tháng 7 2016

ầy bạn xem lại khúc sao chữ và nhé

31 tháng 7 2016

mik biết là thiếu đề nhưng mik thấy thày mik ghi thế giờ mới biết