Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)=3xy2
b) x5+4x3-6x2 : 4x2
x5 : \(\overline{\frac{1}{4}x^3+x-1}\)
4x3-6x2 :
4x3 :
-6x2 :
-6x2 :
0
câu 1:
x3-1+3x2-3x =(x-1)(x^2+x+1)+3x(x-1)=(x-1)(x^2+x+1+3x)=(x-1)(x^2+4x=1)
Câu 2 :
a) \(\left(x^4-2x^3+2x-1\right):\left(x^2-1\right)\)
\(=\left(x^4-x^2-2x^3+2x+x^2-1\right):\left(x^2-1\right)\)
\(=\left[x^2\left(x^2-1\right)-2x\left(x^2-1\right)+\left(x^2-1\right)\right]:\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-2x+1\right):\left(x^2-1\right)\)
\(=x^2-2x+1\)
b) \(\left(x^6-2x^5+2x^4+6x^3-4x^2\right):6x^2\)
\(=\frac{1}{6}x^4-\frac{1}{3}x^3+\frac{1}{3}x^2+x-\frac{2}{3}\)
Câu 3 :
Sửa đề :
\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3}{x-2}\)
\(\frac{x^4+x^3+6x^2+5x+5}{x^2+x+1}=\frac{x^4+x^3+x^2+5x^2+5x+5}{x^2+x+1}=\frac{x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)}{\left(x^2+x+1\right)}=\frac{\left(x^2+x+1\right)\left(x^2+5\right)}{x^2+x+1}=x^2+5\)
\(\frac{x^4+x^3+2x^2+x+1}{x^2+x+1}=\frac{x^4+x^3+x^2+x^2+x+1}{x^2+x+1}=\frac{x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)}{x^2+x+1}=\frac{\left(x^2+x+1\right)\left(x^2+1\right)}{x^2+x+1}=x^2+1\)
a) \(3\left(2x-1\right)-x\left(3x-2\right)=3x\left(1-x\right)+2\)
\(6x-3-3x^2+2x=3x-3x^2+2\)
\(6x-3x^2+2x-3x+3x^2=2+3\)
\(5x=5\)
\(x=1\)
b) \(2x^3\left(2x-3\right)-x^2\left(4x^2-6x+2\right)=0\)
\(4x^4-6x^3-4x^4+6x^2-2x^2=0\)
\(-2x^2=0\)
\(x^2=0\)
\(x=0\)
\(\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
\(=x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^5+x+1\)
mk chỉ phân tích thôi bạn tự chia nha!
a, \(16x^4-81=(4x^2)^2-9^2=(4x^2-9)(4x^2+9)\)
\(=[(2x)^2-3^2](4x^2+9)\)
\(=(2x+3)(2x-3)(4x^2+9)\)
b, \(x^3-3x^2+3x-1=(x-1)^3\)
\(x^2-2x+1=(x-1)^2\)
c, \(18x^5+9x^4+3x^3+6x^2+3x+1=(18x^5+9x^4+3x^3)+(6x^2+3x+1)\)
\(=(6x^2+3x+1)(3x^3+1)\)
câu c bạn đánh sai 1 dấu phép toán kìa!!!!
a) Ta có: \(\frac{x^3-3x^2+x-3}{x-3}\)
\(=\frac{x^2\left(x-3\right)+\left(x-3\right)}{\left(x-3\right)}=\frac{\left(x-3\right)\left(x^2+1\right)}{x-3}=x^2+1\)
b) Ta có: \(\frac{x^2+2x+x^2-4}{x+2}\)
\(=\frac{x\left(x+2\right)+\left(x+2\right)\left(x-2\right)}{x+2}=\frac{\left(x+2\right)\left(x+x-2\right)}{x+2}=2x-2\)
c) Ta có: \(\frac{2x^3-5x^2+6x-15}{2x-5}\)
\(=\frac{x^2\left(2x-5\right)+3\left(2x-5\right)}{2x-5}=\frac{\left(2x-5\right)\left(x^2+3\right)}{2x-5}=x^2+3\)
Từng sau đăng bài bạn chịu khó đừng chụp ngang nhé, mình vẹo cả cổ để đọc được bài. Cố gắng trình bày latex càng tốt.
a) 3x^2-6x : -x+2
3x^2-6x : -3x
0
b) x^3 +2x^2 -2x -1 : x^2+3x+1
x^3 +3x^2 +x : x-1
-x^2 -3x -1 :
-x^2 -3x -1
0
A/
-3X
B) X-1